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Let g ∈ G denote an element in group G. Given a trajectory {g1, g2, ..., gT } we are interested in its probability under
some prior p({gt}) with a notion of smoothness (ideally specified via some learned hyperparameter(s)). In Euclidean
space, this is easily achieved by defining a GP prior:

p({xt}) = N (0,K), (1)

where Kij = k(ti, tj) for some PSD kernel k(·, ·) : R1 × R1 → Rn. Unfortunately this is not easily generalized to
non-Euclidean spaces, where we would need (k(·, ·) : R1 × R1 → G), since the data on G cannot be jointly Gaussian
(the definition of a GP) as Gaussian distributions are only defined on Rn.

However, we can take inspiration from the fact that the Mátern(p) kernel in Euclidean space is equivalent to a
continuous time autoregressive process of order p (AR(p)) for some coefficients {a1:p} (Rasmussen & Wiliams appendix
B2). Writing such an AR(p) process in discrete time, we get

xt = ε+
p∑
i=1

aixt−i, (2)

where ε ∼ N (0,Σ). We can re-write this as an AR(p) process over the consecutive displacements:

(xt − xt−1) = ε+
p∑
i=1

ai(xt−i − xt−i−1) := δx̃t + ε, (3)

which allows us to define a distribution over displacements

p(xt − xt−1) = N (δx̃t,Σ) (4)
p((xt − xt−1)− δx̃t) = N (0,Σ) (5)

We can now write down a prior over trajectories (ignoring boundaries for now), assuming that it factorizes over
displacements:

p({xt}) =
∏
t

p((xt − xt−1)− δx̃t), (6)

which provides a basis for a similar definition on G.

On G, we can write the ‘displacement’ between consecutive states as (g−1
t−1 · gt). This gives rise to an ‘autoregressive’

process

g−1
t−1 · gt = ε ·

p∏
i=1

ai(g−1
t−i−1 · gt−i), (7)

where ε is a noise process on the manifold (we will define this later). It’s not at all clear what we mean by ai(g−1
t−i−1·gt−i),

which in Euclidean space is a scaled version of the corresponding displacement. Here we will make the following
definition, which is equivalent for small displacements:

ai(g−1
t−i−1 · gt−i) := Exp

[
ai Log

[
g−1
t−i−1 · gt−i

]]
, (8)

where Exp and Log are the exponential and logarithmic maps on G. That is, we take the consecutive displacements,
project them into the tangent space, scale them by a learned parameter ai, and project them back onto the group.
Defining

δg̃t :=
p∏
i=1

ai(g−1
t−i−1 · gt−i) (9)

δδgt := (δg̃t)−1 · (g−1
t−1 · gt), (10)

we can now define a distribution over displacements using a Gaussian projected onto the group (as in Falorsi et al.
2019):

r(x) = N (0,Σ) (11)

p(δδgt) =
∑

x∈Rn: Exp(x)=δδgt

r(x)|J(x)|−1. (12)
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We note that for an order 0 process (p = 0), δδgt = (g−1
t−1 · gt) and we recover Brownian motion on the manifold.

While this formulation allows us to specify some notion of smoothness/continuity on the manifold, we would like to
generalize it to the continuous-time domain as for the Euclidean case, or come up with a different way of specifying a
prior over continuous-time smooth processes on such manifolds.
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