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In neuroscience, we often want to understand what is being represented by some population
of neurons. Often, we know that such a population represents physically relevant variables
such as location in space or head direction, and we want to understand how the state being
represented changes over time. This is commonly achieved using some form of neural decoding
that maps from a set of neural activations to a predicted state. However, most such decoding
models are inherently Euclidean; that is, they predict features such as location or velocity that
consist of scalar variable. This is the case despite ample evidence that the brain commonly
represents non-Euclidean quantities such as head direction, phase within a task, or location using
a periodic grid. In this work, we develop a set of new neural decoding methods that facilitate
the inference of non-Euclidean quantities from neural recordings in a supervised setting. We do
this by learning a generative model from the manifold to neural activations on the training data
and inverting this generative model to infer the instantenous hidden state at test time. By using
an explicitly probabilistic model, we are able to capture features of neural data such as smooth
tuning curves, continuity in time, and non-Gaussian firing statistics.

Introduction

It is common in neuroscience to want to ‘decode’ some quantity of interest from neural recordings.
In many cases, we have a set of labeled data for training such a model, and we then want to
predict the represented quantities on a set of held-out data where we don’t have access to labels.
However, the brain often represents non-Euclidean quantities, such as head direction of ‘toroidal’
grid cells (Jensen et al., 2020; Turner-Evans et al., 2020; Seelig and Jayaraman, 2015; Chaudhuri
et al., 2019; Gardner et al., 2022). It is therefore natural to ask how we can generalize our
decoding methods to these non-Euclidean problem settings. In general this is difficult as most of
our out-of-the-box methods predict Euclidean quantities by default, which can lead to spurious
discontinuities or reduced performance when projected onto a non-Euclidean manifold of interest
post-hoc. In this work, we use Gaussian processes to define smooth functions on manifolds and
invert these to generate predictions in a supervised learning setting.

Method

Problem setting

We imagine a problem setting where we are able to record a quantity of interest Z ∈MT over
some period of time T together with the associated responses of a population of N neurons
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X ∈ RN×T . Given this training data, our goal is to predict the state Z∗ on the basis of neural
data X∗ recorded at some set of test points. A common approach in neuroscience is to train a
discriminative model zt ≈ fθ(xt) with parameters θ that are chosen to minimize the training
loss

θ = argminθ
∑
t

(zt − fθ(xt))2. (1)

Predictions are then made at any test point by passing the data through the function f . However,
this approach suffers from a few shortcomings. One is that z is often some relatively noise-
free quantity while neural activity x provides a very noisy readout of the underlying process.
Another is that it is non-trivial to build in inductive biases common in neuroscience, such as
the assumption that neural activity should be a smooth function of the underlying process z
(Jensen et al., 2020; Stringer et al., 2019). Finally, it is non-trivial to define fθ in cases where z
does not live in Euclidean space.

Inverting a generative model

To overcome the challenges highlighted in the previous section, we instead define a generative
model xt ∼ pθ(xt|zt) that maps from the latent quantity z to neural activity xt. Following
previous work in neuroscience, we can then model p(ynt|zt) as a Gaussian process (Rasmussen
and Williams, 2006), which allows us to build in notions of smoothness and non-Gaussian noise
models important for modelling neural data (Wu et al., 2017, 2018; Jensen et al., 2020, 2021,
2022). A Gaussian process defines a jointly Gaussian distribution over the observations,

p(xn|Z) = N (xn;µ = 0,Σ = k(Z,Z)). (2)

Here we have assumed that the mean function µ is 0, and k(·, ·) : M×M → R is a kernel
which defines a prior distribution over functions. Importantly, such kernels can also be defined
for non-Euclidean manifolds (Jensen et al., 2020; Borovitskiy et al., 2020; Feragen et al., 2015),
which allows us to build in the prior assumption that neural activity should be a smooth function
on the manifold. In other words, we can build in the assumption that latent states z1, z2, which
are separated by a small geodesic distance, should give rise to similar distributions over neural
activity. Finally, we assume the generative model to factorize across neurons

p(X|Z) =
∏
n

p(xn|Z) (3)

As shown in Figure 1, such a GP-based model leads to a much better data fit than other common
models in neuroscience.

Importantly, having defined our generative model p(X|z), we can now invert it at test time.
In other words, we can compute the posterior distribution over x∗ conditioned on (i) the test
observations x∗, and (ii) the training data (x, z)

p(Z∗|X∗, (X,Z)) ∝ p(X∗|z∗, (X, z))p(Z∗) (4)
= p(Z∗)

∏
n

p(x∗n|Z∗, (xn,Z)). (5)

Here, p(z∗) is a prior which we will discuss further below. p(x∗n|z∗, (xn, z)) is a standard
Gaussian process posterior, which can be computed in closed form (Rasmussen and Williams,
2006).

Finally, we note that the kernel k(·, ·) often contains some set of hyperparameters θ characterizing
e.g. the length scale and height of the tuning curve. It is common to optimize these on the
training data by maximizing the marginal likelihood log p(X|Z), which can be computed in
closed form (Rasmussen and Williams, 2006).
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Figure 1: Supervised learning with generative models. (A) Here we show the utility of
Gaussian processes for modeling neural data in the common setting of decoding on a ring using
example neurons from Peyrache et al. (2015a). Black dots indicate empirically observed spike
counts as a function of head direction (x axis). Blue curve indicates the best fit in the space of
tuning curves that are linear in sin θ and cos θ. Green curve indicates the best fit to the data of
a binned decoder with a Poisson noise model. Purple curve indicates a Gaussian process fit to
the data, which yields a better model of the data than the linear or binned approaches while
also generalizing more readily to higher-dimensional manifolds.

Variational inference

The closed form expressions for the marginal likelihood and posterior predictive distribution for
Gaussian processes are exact but suffer from two major shortcomings. Firstly, they can only be
derived for a Gaussian noise model, while neural recordings are more accurately modelled using
discrete noise models. Secondly, they suffers from a computational complexity of O(T 3), which
can be prohibitively expensive. To overcome these two challenges, we resort to the stochastic
variational GP (SVGP) framework of Hensman et al. (2015).

Choice of priors

In Equation 5, we introduced a prior p(Z) over the latent states. A simple choice of prior would
be a uniform prior on the manifold

pU (Z) =
∏
t

pU (zt) = V −TM , (6)

where VM is the volume of the manifold (Jensen et al., 2020). However, we do in fact often have
some prior knowledge about the processes being represented by the brain. In particular, most
physically relevant processes tend to unfold continuously in time, which severely constrains the
set of plausible trajectories Z. We therefore expect that building in this prior knowledge would
improve our predictive power at test time.

In Euclidean space, a simple way of building in this prior would be to use an autoregressive
process, reminiscent of e.g. the Kalman filter commonly used for brain machine interfaces. In an
autoregressive process of order M , we predict zt from the previous m states as

zt ≈ zt−1 +
M∑
m=1

amzt−m, (7)
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or from their displacements

zt ≈ zt−1 +
M−1∑
m=1

am(zt−m − zt−m−1). (8)

If we assume the error of this estimate to be Gaussian distributed, this induces a prior of zt of
the form

zt ∼ N (zt;µ = zt−1 +
M−1∑
m=1

amδt−m, σ
2), (9)

where we have defined δt−m := zt−m − zt−m−1 and σ2 is the noise variance. This model has M
parameters, namely σ2 and {am}M−1

m=1 , which can either be fitted to the training data or treated
as free parameters at inference time.

Unfortunately, amδm is not well-defined on Riemannian manifolds since they are not vector
spaces, so subtraction and scalar multiplication is not defined. However, we can generalize
the notion of an autoregressive prior to such manifolds by working in the tangent space of the
manifold, which is in fact a vector space. We do this by defining

δt−m := Log
[
z−1
t−m−1 · zt−m

]
. (10)

Here, z indicates a group element, · indicates group multiplication, z−1 indicates its group
inverse (i.e. z−1 · z = I, the identity element), and Log indicates the logarithmic map from
the group onto the tangent space. Notably, this recovers our previous definition of δt−m in the
special case where the manifoldM is Euclidean space. We can now define our approximation
error

ε := Exp
[
δt +

M−1∑
m=1

amδt−m

]
, (11)

which has been projected onto the group by the exponential map Exp[]. Finally, we assume
that this approximation error has a wrapped Gaussian distribution, the density of which can be
estimated following Falorsi and Forré (2020):

p(ε) =
∑

xs.t.Exp[x]=ε
N (x; 0, σ2)|J(x)|−1, (12)

where |J(x)| is the Jacobian of the exponential map at x.

Results

In this section, we apply our method to a range of biological and synthetic datasets to illustrate
its utility for neuroscience.

Performance on biological data

We start by considering a dataset recorded by Peyrache et al. (2015b,a) from the mouse
anterodorsal thalamic nucleus during free foraging. This dataset has previously been studied
with the purpose of characterizing the head direction circuit of the mouse and as a testbed for
various unsupervised learning methods in neuroscience (Chaudhuri et al., 2019; Jensen et al.,
2020; Liu and Lengyel, 2021; Rubin et al., 2019). We split the data into 9 distinct training
datasets, each with its own test dataset (which formed a separate training dataset). We then
performed supervised decoding of the test head direction using three methods (Figure 1). First,
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Figure 2: Supervised learning for mouse head direction data. (A) Predicted head
direction as a function of the true head direction for an example dataset recorded by Peyrache
et al. (2015a), with head direction predicted using either a linear model (blue), binned decoder
(green) or mgplvm (black). (B) Mean discrepancy between true and predicted head direction
for a linear decoder, binned decoder, mGPLVM with uniform prior, or mGPLVM with a random
walk prior. Discrepancy was quantified as the geodesic distance between the true and inferred
head direction at each time point, and error bars indicate standard error across 10 partitions of
the data. (C) Mean discrepancy between true and predicted head direction as a function of the
order of the mGPLVM autoregressive prior. An order of 0 corresponds to the random walk prior
from (B) and error bars indicate standard error across 10 partitions of the data.

we considered a decoder that predicted sin θ and cos θ as a linear function of x. Second, we
considered a binned Bayesian decoder with a Poisson noise model. These two approaches
are commonly used in the neuroscience literature for decoding head direction. Finally, we
considered our generative modelling approach, using a ‘random walk’ prior (i.e. an autoregressive
process of order 0). This mGPLVM-based approach appeared to capture the true head direction
more faithfully than the alternatives, suggesting that it is a useful method for neural decoding
(Figure 2A). We then quantified the error across all 10 data partitions, with the error ε defined
as the average geodesic distance between the true and predicted head direction. Here we found
that mGPLVM with a uniform prior (ε = 0.324) outperformed both the linear (ε = 0.444±0.035)
and binned (ε = 0.355± 0.006) decoders. However, the benefit of such an explicitly generative
model became particularly pronounced after introducing a random walk prior which reduced the
error to ε = 0.234± 0.010 (Figure 2B).

Finally, to better understand the effect of the prior, we modeled the data with autoregressive
priors of increasing order. For these analyses, the standard deviation of the prior (σ2) was fitted
to the training data while the autoregressive coefficients (am) were inferred at test time. Here
we found a modest but significant effect of increasing the order of the prior, with a correlation
between order and error of ρ = −0.82 (Figure 2C).
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