Reinforce

Our goal is to learn a policy 7y with parameters § which maximizes the reward within an episode:

T
> rt] . (1)

t=0

J(0) =E r,

Here, we define 7 as a single ‘trajectory’ 7 = {s;, as, r;}L_,. The simplest way to optimize our objective is to use
gradient descent with the gradient given by

VoJ(0) = VoE,rr,

T
va] . 2)
t=0

However, this requires differentiating through the environment which is in general intractable. Instead, we use
the linearity of expectations and the identity Vylog f(0) = f(0) 'V f(0) to write

V() = / Vops(r) Rodr 3)
— [() Valogpa(r) e 4)
= Err, [R:Vologpe(T)], 5)

where we define R, := ZtT:o 7¢|7. Since the environment does not depend on 6, we can simplify the calculation

of Vg log py(7):

T
Vo logpy(T) = Vo |logp(so) + Zlng(3t+1|3ta a;) log We(at|5t)] (6)
t=0
T
ZV log mg(a|sy). (7)
t=0

Inserting this in the expression for V4.J(6) and taking a Monte Carlo estimate of the expectation gives rise to
the REINFORCE algorithm (Williams, 1992):

T
Vaj(9> = ETNTK'Q RT Z V@ log W@(at‘st)] (8)
=0
T
¥y Z (Z Tt) (Z Vo logﬁe(at|st)> . (9)
T~TY t=0

Variance reduction

While the REINFORCE algorithm is unbiased, it also has high variance, which can make learning slow and
unstable. It is therefore common to introduce modifications which reduce the variance. The first of these comes
from noting that an action taken at time ¢ cannot affect the reward received at times < ¢. A corollary of this is

that i
(Z) Yy log w6<at|st>] 0. (10)

t'=0

ETNT('G

This allows us to define I?; := Zgzt ry and rewrite our REINFORCE update as

T
1
Vo J(0) = N Z ZRtve log mg(aylse). (11)

T~y =0

It is straightforward to show that for any constant B:

E;r, [BVglogmg(ai|s)] = B/pg(T)Vg log mg(as|s;)dT = B/pg(at, s1) Vg log my(ay|s;)dsiday (12)

= B/Vgpg(at, s¢)dsiday = BV /pg(at, s¢)dsiday = BVl = 0. (13)
We can thus subtract a baseline from the reward-to-go R, to get
1 T
~ 5 2 D (R = B)Valogmy(ars:). (14)
T~y t=0

If we do a bit of maths we can derive the value of B which minimizes the variance of the estimator, ignoring
the causality stuff above and defining g(7) := Vy log py(7):

o> =E [g(r)*(r(r) = B)*] = E[g(7)(r(7) — B)]" (15)
B [g(r)(r(r) - B?] - Elg(r)r(r)] (16)
% =E [9(7)2(3 — T(T))B] (17)
(18)
This is minimized when

E [g(r)(B —r(r))] =0 (19)
BE [g(1)?] = E [g(7)*r(7)] (20)

_ Efg(r)*r(7)]
P= ey @

That is, using the probability-weighted average reward as a baseline minimizes the variance of our estimator
among constant baselines. However, the baseline can in fact be a function of the state without biasing our
gradient estimator. If B depends on the state s; we get

Erry [B(st) Vo log ma(arls:)] Z/ B(s)p(st) [Ve /at 7T0(®t|8t)dat] ds (22)

St

— / B(s)p(st) [Vel]ds; =0 (23)

St

A common choice here is the expected future reward

T
=E[> s (24)

This gives rise to a so-called actor-critic algorithm

Vo J (6 Z Z V' (s:))Voglog mg(azst). (25)

T~7r9 t=0

The actor-critic update is unbiased but can still have high variance due to the I?; term which sums rewards
over a stochastic trajectory. One way to reduce this variance is to instead use a ‘bootstrapped’ estimate, noting
that

E[R] = E[r: + V(s¢11)], (26)

with the right-hand side having lower variance than the left-hand side. We can thus use r; + V(s;41) as an
estimate of R; to define the ‘advantage function” A; = r; + V' (s¢41) — V(s¢), which gives rise to the ‘advantage
actor critic’ (A2C) algorithm:

VoT(0) & 5 30 S+ Visen) — V(s0) Vologmo(ar]s.). (27)

T~y =0

While we have considered two extreme cases of a full Monte-Carlo sample of R; and a ‘one-step’ bootstrap,
the sum in R; can be truncated to any order with R, replaced by V' (s;). In theory this estimator remains
unbiased — however, in practice our estimate of V'(s;) will be inexact, which introduces a bias to our updates.
The bootstrapping procedure outlined above thus leads to a tradeoff between the bias and variance of our update
step.

Implementation

Automatic differentiation

For the A2C algorithm outlined above, it is common to parameterize both the policy 7 (as|s;) and the value
function Vj(s;) with neural networks — often with a subset of shared parameters between ¢ and ¢. This leaves
the problem of updating the parameters. In order to use out-of-the-box automatic differentiation software, we
do this by defining an auxiliary utility (i.e. negative loss)

J(0) = % S5 (4 Visen) — Vi) log molarsa), (28)

Tr~mg t=0
where 7, and V(s,) are constant w.r.t. . While .J(6) has no intrinsic interpretation, it is chosen such that
Vo () = VgJ(6). (29)

Importantly, we no longer have to differentiate through the environment - only the policy.
The gradient w.r.t. the value function loss is given by
1
VeLy =V, zt: §(V¢>($t) —R)* = zt:(v¢(8t) — R)V(Vs(st)- (30)

When 7y and V,, share parameters, we also need to balance these the gradients w.r.t. # and ¢ in our update step.
We do this by defining §; = R; — V/(s;), where R; can optionally be a bootstrapped estimate, introducing a
hyperparameter (3, and maximizing the utility

T
L— % S5 Clog molarlsi) + BuV(50)3. (31)

Tr~mg =0

Importantly, we do not propagate gradients w.r.t. ¢ through the computation of ¢;.

References

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning,.
Machine learning, 8(3):229-256.

