
Reinforce

Our goal is to learn a policy πθ with parameters θ which maximizes the reward within an episode:

J(θ) = Eτ∼πθ

[
T∑
t=0

rt

]
. (1)

Here, we de�ne τ as a single ‘trajectory’ τ = {st, at, rt}Tt=0. �e simplest way to optimize our objective is to use
gradient descent with the gradient given by

∇θJ(θ) = ∇θEτ∼πθ

[
T∑
t=0

γtrt

]
. (2)

However, this requires di�erentiating through the environment which is in general intractable. Instead, we use
the linearity of expectations and the identity∇θ log f(θ) = f(θ)−1∇θf(θ) to write

∇θJ(θ) =

∫
∇θpθ(τ)Rτdτ (3)

=

∫
pθ(τ)∇θ log pθ(τ)Rτdτ (4)

= Eτ∼πθ [Rτ∇θ log pθ(τ)] , (5)

where we de�neRτ :=
∑T

t=0 rt|τ . Since the environment does not depend on θ, we can simplify the calculation
of∇θ log pθ(τ):

∇θ log pθ(τ) = ∇θ

[
log p(s0) +

T∑
t=0

log p(st+1|st, at) log πθ(at|st)

]
(6)

=
T∑
t=0

∇θ log πθ(at|st). (7)

Inserting this in the expression for ∇θJ(θ) and taking a Monte Carlo estimate of the expectation gives rise to
the REINFORCE algorithm (Williams, 1992):

∇θJ(θ) = Eτ∼πθ

[
Rτ

T∑
t=0

∇θ log πθ(at|st)

]
(8)

≈ 1

N

∑
τ∼πθ

(
T∑
t=0

rt

)(
T∑
t=0

∇θ log πθ(at|st)

)
. (9)

Variance reduction

While the REINFORCE algorithm is unbiased, it also has high variance, which can make learning slow and
unstable. It is therefore common to introduce modi�cations which reduce the variance. �e �rst of these comes
from noting that an action taken at time t cannot a�ect the reward received at times < t. A corollary of this is
that

Eτ∼πθ

[(
t−1∑
t′=0

rt′

)
∇θ log πθ(at|st)

]
= 0. (10)

1

�is allows us to de�ne Rt :=
∑T

t′=t rt′ and rewrite our REINFORCE update as

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

Rt∇θ log πθ(at|st). (11)

It is straightforward to show that for any constant B:

Eτ∼πθ [B∇θ log πθ(at|st)] = B

∫
pθ(τ)∇θ log πθ(at|st)dτ = B

∫
pθ(at, st)∇θ log πθ(at|st)dstdat (12)

= B

∫
∇θpθ(at, st)dstdat = B∇θ

∫
pθ(at, st)dstdat = B∇θ1 = 0. (13)

We can thus subtract a baseline from the reward-to-go Rt to get

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

(Rt −B)∇θ log πθ(at|st). (14)

If we do a bit of maths we can derive the value of B which minimizes the variance of the estimator, ignoring
the causality stu� above and de�ning g(τ) := ∇θ log pθ(τ):

σ2 = E
[
g(τ)2(r(τ)−B)2

]
− E [g(τ)(r(τ)−B)]2 (15)

= E
[
g(τ)2(r(τ)−B)2

]
− E [g(τ)r(τ)]2 (16)

dσ2

dB
= E

[
g(τ)2(B − r(τ))B

]
(17)

(18)

�is is minimized when

E
[
g(τ)2(B − r(τ))

]
= 0 (19)

BE
[
g(τ)2

]
= E

[
g(τ)2r(τ)

]
(20)

B =
E [g(τ)2r(τ)]

E [g(τ)2]
. (21)

�at is, using the probability-weighted average reward as a baseline minimizes the variance of our estimator
among constant baselines. However, the baseline can in fact be a function of the state without biasing our
gradient estimator. If B depends on the state st we get

Eτ∼πθ [B(st)∇θ log πθ(at|st)] =
∫
st

B(st)p(st)

[
∇θ

∫
at

πθ(at|st)dat
]
dst (22)

=

∫
st

B(st)p(st) [∇θ1] dst = 0 (23)

A common choice here is the expected future reward

V (st) = E[
T∑
t′=t

rt|st] (24)

�is gives rise to a so-called actor-critic algorithm

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

(Rt − V (st))∇θ log πθ(at|st). (25)

2

�e actor-critic update is unbiased but can still have high variance due to the Rt term which sums rewards
over a stochastic trajectory. One way to reduce this variance is to instead use a ‘bootstrapped’ estimate, noting
that

E [Rt] = E[rt + V (st+1)], (26)

with the right-hand side having lower variance than the le�-hand side. We can thus use rt + V (st+1) as an
estimate of Rt to de�ne the ‘advantage function’ At = rt+ V (st+1)− V (st), which gives rise to the ‘advantage
actor critic’ (A2C) algorithm:

∇θJ(θ) ≈
1

N

∑
τ∼πθ

T∑
t=0

(rt + V (st+1)− V (st))∇θ log πθ(at|st). (27)

While we have considered two extreme cases of a full Monte-Carlo sample of Rt and a ‘one-step’ bootstrap,
the sum in Rt can be truncated to any order with Rt′ replaced by V (st′). In theory this estimator remains
unbiased – however, in practice our estimate of V (st) will be inexact, which introduces a bias to our updates.
�e bootstrapping procedure outlined above thus leads to a tradeo� between the bias and variance of our update
step.

Implementation

Automatic di�erentiation

For the A2C algorithm outlined above, it is common to parameterize both the policy πθ(at|st) and the value
function Vφ(st) with neural networks – o�en with a subset of shared parameters between θ and φ. �is leaves
the problem of updating the parameters. In order to use out-of-the-box automatic di�erentiation so�ware, we
do this by de�ning an auxiliary utility (i.e. negative loss)

J̃(θ) =
1

N

∑
τ∼πθ

T∑
t=0

(rt + V (st+1)− V (st)) log πθ(at|st), (28)

where rt and V (st) are constant w.r.t. θ. While J̃(θ) has no intrinsic interpretation, it is chosen such that

∇θJ̃(θ) = ∇θJ(θ). (29)

Importantly, we no longer have to di�erentiate through the environment – only the policy.

�e gradient w.r.t. the value function loss is given by

∇φLV = ∇φ

∑
t

1

2
(Vφ(st)−Rt)

2 =
∑
t

(Vφ(st)−Rt)∇φ(Vφ(st). (30)

When πθ and Vφ share parameters, we also need to balance these the gradients w.r.t. θ and φ in our update step.
We do this by de�ning δt = Rt − V (st), where Rt can optionally be a bootstrapped estimate, introducing a
hyperparameter βV , and maximizing the utility

L =
1

N

∑
τ∼πθ

T∑
t=0

(log πθ(at|st) + βV V (st))δt. (31)

Importantly, we do not propagate gradients w.r.t. φ through the computation of δt.

3

References

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3):229–256.

4

