
Natural continual learning:
success is a journey, not (just) a destination

Ta-Chu Kao∗@1, Kristopher T. Jensen∗1, Alberto Bernacchia2, and Guillaume Hennequin1

1 Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
2 MediaTek Research, Cambridge, UK

∗ These authors contributed equally @ Corresponding author (tck29@cam.ac.uk)

Abstract

Biological agents are known to learn many different tasks over the course of their lives, and to be able to
revisit previous tasks and behaviors with little to no loss in performance. In contrast, artificial agents
are prone to ‘catastrophic forgetting’ whereby performance on previous tasks deteriorates rapidly as
new ones are acquired. This shortcoming has recently been addressed using methods that encourage
parameters to stay close to those used for previous tasks. This can be done by (i) using specific parameter
regularizers that map out suitable destinations in parameter space, or (ii) guiding the optimization journey
by projecting gradients into subspaces that do not interfere with previous tasks. However, parameter
regularization has been shown to be relatively ineffective in recurrent neural networks (RNNs), a setting
relevant to the study of neural dynamics supporting biological continual learning. Similarly, projection
based methods can reach capacity and fail to learn any further as the number of tasks increases. To
address these limitations, we propose Natural Continual Learning (NCL), a new method that unifies weight
regularization and projected gradient descent. NCL uses Bayesian weight regularization to encourage
good performance on all tasks at convergence and combines this with gradient projections designed to
prevent catastrophic forgetting during optimization. NCL formalizes gradient projection as a trust region
algorithm based on the Fisher information metric, and achieves scalability via a novel Kronecker-factored
approximation strategy. Our method outperforms both standard weight regularization techniques and
projection based approaches when applied to continual learning problems in RNNs. The trained networks
evolve task-specific dynamics that are strongly preserved as new tasks are learned, similar to experimental
findings in biological circuits.

1 Introduction

Catastrophic forgetting is a common feature of machine learning algorithms where training on a new task
often leads to poor performance on previously learned tasks. This is in contrast to biological agents which are
capable of learning many different behaviors over the course of their lives with little to no interference across
tasks. The study of continual learning in biological networks may therefore help inspire novel approaches in
machine learning, while the development and study of continual learning algorithms in artificial agents can
help us better understand how this challenge is overcome in the biological domain. This is particularly true
in recurrent neural networks (RNNs) which are important due to their practical and biological relevance.
However, continual learning in RNNs has recently proven challenging for many existing algorithms (Ehret
et al., 2020; Duncker et al., 2020). For these reasons, we focus our experiments on RNNs in the present
work although our algorithm and theoretical considerations are applicable to any continual learning setting
that can be formalized as a probabilistic model, whether the problem is supervised or unsupervised and the
architecture recurrent or feedforward.
Previous work has addressed the challenge of continual learning in artificial agents using weight regularization
where parameters important for previous tasks are regularized to stay close to their previous values (Kirkpatrick
et al., 2017; Huszár, 2017; Nguyen et al., 2017; Ritter et al., 2018). This approach can be motivated by

1

ar
X

iv
:2

10
6.

08
08

5v
1

 [
cs

.L
G

]
 1

5
Ju

n
20

21

findings in the neuroscience literature of increased stability for a subset of synapses after learning (Xu et al.,
2009; Yang et al., 2009). More recently, approaches based on projecting gradients into subspaces orthogonal
to those that are important for previous tasks have been developed in both feedforward (Zeng et al., 2019)
and recurrent (Duncker et al., 2020) neural networks. This is consistent with experimental findings that
neural dynamics often occupy orthogonal subspaces across contexts in biological circuits (Kaufman et al.,
2014; Ames and Churchland, 2019; Failor et al., 2021; Jensen et al., 2021). While these methods have been
found to perform well in many continual learning settings, they also suffer from various shortcomings. In
particular, while Bayesian weight regularization provides a natural way to weigh previous and current task
information, this approach can fail in practice due to its approximate nature and often requires additional
tuning of the importance of the prior beyond what would be expected in a rigorous Bayesian treatment
(Van de Ven and Tolias, 2018). In contrast, while projection based methods have been found empirically to
mitigate catastrophic forgetting, it is unclear how the ‘important subspaces’ should be selected and how such
methods behave when task demands begin to saturate the network capacity.
In this work, we develop a new method for continual learning, natural continual learning (NCL), by combining
Bayesian continual learning using weight regularization with an optimization procedure that relies on a trust
region constructed from an approximate posterior distribution over the parameters given previous tasks. This
encourages parameter updates predominantly in the null-space of previously acquired tasks while maintaining
convergence to maxima of the Bayesian approximate posterior. We show that NCL outperforms previous
continual learning algorithms, and that our principled Bayesian treatment is particularly important when
task number and complexity increases or network size decreases. We also show that the projection based
methods introduced by Duncker et al. (2020) and Zeng et al. (2019) can be viewed as approximations to such
trust region optimization using the posterior from previous tasks. Finally we use tools from the neuroscience
literature to investigate how the learned networks overcome the challenge of continual learning. Here we
find that the networks learn latent task representations that are stable over time after initial task learning,
consistent with results from biological circuits.

2 Method

Notations We use X>, X−1, Tr(X) and vec(X) to denote the transpose, inverse, trace, and column-wise
vectorization of a matrix X. We use X ⊗Y to represent the Kronecker product between matrices X ∈ Rn×n
and Y ∈ Rm×m such that (X ⊗ Y)mi+k,mj+l = XijYkl. We use bold lower-case letters x to denote column
vectors. We use ‘OWM’ to refer to orthogonal weight modification (Zeng et al., 2019) and ‘DOWM’ for
‘doubly orthogonal weight modification’ to refer to the method proposed by Duncker et al. (2020). Dk refers
to a ‘dataset’ corresponding to task k which in this work generally consists of a set of input-output pairs
{x(i)

k ,y
(i)
k } such that `k(θ) := log p(Dk|θ) =

∑
i log pθ(y(i)

k |x
(i)
k) is the task-related performance on task k for

a model with parameters θ. Finally, we use D̂k to refer to a dataset generated by inputs from the kth task
where {ŷ(i)

k ∼ pθ(y|x(i)
k)} are drawn from the model distribution.

2.1 Bayesian continual learning

Problem statement In continual learning, we train a model on a set of K datasets {D1, . . . ,DK} that
arrive sequentially. The aim is to learn a probabilistic model p(D|θ) that performs well on all tasks. The
challenge in the continual learning setting stems from the sequential nature of learning, and in particular
from the common assumption that the learner does not have access to “past” datasets (i.e., Dj for j < k)
when learning task k. While we enforce this stringent condition in this paper, our approach may be easily
combined with memory-based techniques such as coresets and generative replay which allow for storage of a
subset of past data or an increase in model parameters with each task (Ehret et al., 2020; von Oswald et al.,
2019; Nguyen et al., 2017; Pan et al., 2020).

2

Bayesian approach The continual learning problem is naturally formalized in a Bayesian framework
whereby the posterior after k − 1 tasks is used as a prior for task k. More specifically, we choose a prior p(θ)
on the model parameters and compute the posterior after observing k datasets according to Bayes’ rule:

p(θ|D1:k) ∝ p(θ)
k∏

k′=1
p(Dk′ |θ)

∝ p(θ|D1:k−1)p(Dk|θ), (1)

where D1:k is a concatenation of the first k datasets (D1, . . . ,Dk). In theory, it is thus possible to compute
the exact posterior p(θ|D1:k) after k datasets, while only observing Dk, by using the posterior p(θ|D1:k−1)
after k − 1 tasks as a prior. However, as is often the case in Bayesian inference, the difficulty here is that
the posterior is typically intractable. To address this challenge, it is common to perform approximate online
Bayesian inference. That is, the posterior p(θ|D1:k−1) is approximated by a parametric distribution with
parameters φk−1. The approximate posterior q(θ;φk−1) is then used as a prior for task k.

Online Laplace approximation A common approach is to use the Laplace approximation whereby
the posterior p(θ|D1:k−1) is approximated as a multivariate Gaussian q using local gradient information
(Kirkpatrick et al., 2017; Ritter et al., 2018; Huszár, 2017). This involves (i) finding a mode µk of the posterior
during task k, and (ii) performing a second-order Taylor expansion around µk to construct an approximate
Gaussian posterior q(θ;φk) = N (θ;µk,Λ−1

k), where Λk is the precision matrix and φk = (µk,Λk). In this
case, gradient-based optimization is used to find the posterior mode on task k (c.f. Equation 1):

µk = arg max
θ

log p(θ|Dk,φk−1) (2)

= arg max
θ

log p(Dk|θ) + log q(θ|φk−1) (3)

= arg max
θ

`k(θ)− 1
2(θ − µk−1)>Λk−1(θ − µk−1)︸ ︷︷ ︸

:= Lk(θ)

(4)

The precision matrix Λk is given by the Hessian of the negative log posterior at µk:

Λk = − ∇2
θ log p(θ|Dk,φk−1)

∣∣
θ=µk

= H(Dk,µk) + Λk−1, (5)

where H(Dk,µk) = − ∇2
θ log p(Dk|θ)

∣∣
θ=µk

is the Hessian of the negative log likelihood of Dk.

Continual learning with the online Laplace approximation thus involves two steps for each new dataset
Dk. First, given Dk and the previous posterior q(θ|µk−1,Λ

−1
k−1) (i.e. the new prior), µk is found using

gradient-based optimization (Equation 4). This step can be interpreted as optimizing the likelihood of Dk
while penalizing changes in the parameters θ according to their importance for previous tasks, as determined
by the prior precision matrix Λk−1. Second, the new posterior precision matrix Λk is computed according to
Equation 5.

Approximating the Hessian In practice, computing Λk presents two major difficulties. First, because
q(θ;φk) is a Gaussian distribution, Λk has to be positive semi-definite (PSD) which is not guaranteed for the
Hessian H(Dk,µk). Second, if the number of model parameters nθ is large, it may be prohibitive to compute
a full (nθ × nθ) matrix. To address the first issue, it is common to approximate the Hessian with the Fisher
information matrix (FIM; Martens, 2014; Huszár, 2017; Ritter et al., 2018):

Fk = Ep(D̂k|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)>

]∣∣∣
θ=µk

≈ H(Dk,µk) (6)

The FIM is PSD which ensures that Λk =
∑k
k′=1 Fk′ is also PSD. Computing Fk may still be impractical if

there are many model parameters, and it is therefore common to further approximate the FIM using structured

3

A convex loss

Laplace Projected NCL (ours) Task 1 Task 2 Global

B non-convex loss

Figure 1: Continual learning in a toy problem. (A) Loss landscapes of task 1 (`1; left), task 2 (`2;
middle) and the combined loss `1+2 = `1 + `2 (right). Stars indicate the global optima for `1 (red), `2 (blue),
and `1+2 (purple). We assume that θ has been optimized for `1 and consider how learning proceeds on task 2
using either the Laplace posterior (‘Laplace’, green), projected gradient descent on `2 with preconditioning
according to task 1 (‘Projected’, pink), or NCL (black dashed). Laplace follows the steepest gradient of `1+2
and transiently forgets task 1. NCL follows a flat direction of `1 and converges to the global optimum of `1+2
with good performance on task 1 throughout. Projected gradient descent follows a similar optimization path
to NCL but eventually diverges towards the optimum of `2. (B) As in (A), now with non-convex `2 (center),
leading to a second local optimum of `1+2 (right) while `1 is unchanged (left). In this case, Laplace can
converge to a local optimum which has ‘catastrophically’ forgotten task 1. Projected gradient descent moves
only slowly in ‘steep’ directions of `1 but eventually converges to a minimum of `2. Finally, NCL finds a local
optimum of `1+2 which retains good performance on task 1. See Appendix J for further mathematical details.

approximations with fewer parameters. In particular, a diagonal approximation to Fk recovers Elastic Weight
Consolidation (EWC; Kirkpatrick et al., 2017) while a Kronecker-Factored approximation (Martens and
Grosse, 2015) recovers the method proposed by Ritter et al. (2018). We denote this method ‘KFAC’ and use
it in Section 3 as a comparison for our own Kronecker-factored method.

2.2 Natural continual learning

While the online Laplace approximation has been applied successfully in several continual learning settings
(Kirkpatrick et al., 2017; Ritter et al., 2018), it has also been found to perform sub-optimally on a range
of problems (Van de Ven and Tolias, 2018; Duncker et al., 2020). Additionally, its Bayesian interpretation
in theory prescribes a unique way of weighting the contributions of previous and current tasks to the
loss. However, to perform well in practice, weight regularization approaches have been found to require
ad-hoc re-weighting of the prior term by several orders of magnitude (Kirkpatrick et al., 2017; Ritter et al.,
2018; Van de Ven and Tolias, 2018). We illustrate the shortcomings of weight regularization on a simple
continual regression problem in Figure 1, where gradient descent on the Laplace posterior produces an indirect
optimization path along which the first task is transiently forgotten as the second task is being learned. In
addition, this can lead to catastrophic forgetting when the loss is non-convex (Figure 1B; green).
An alternative approach that has found recent success in a continual learning setting involves projection based
methods which restrict parameter updates to a subspace that does not interfere with previous tasks (Zeng
et al., 2019; Duncker et al., 2020). However, it is not immediately obvious how this projected subspace should
be selected in a way that appropriately balances learning on previous and current tasks. Additionally, such
projection based algorithms have fixed points that are minima of the current task, but not necessarily minima
of the (negative) Bayesian posterior. This can lead to catastrophic forgetting in the limit of long training
times (Figure 1; pink), unless the learning rate is exactly zero in directions that interfere with previous tasks.
To address these shortcomings, we introduce “Natural Continual Learning” (NCL) – an extension of the online
Laplace approximation that also restricts parameter updates to directions which do not interfere strongly
with previous tasks. In a Bayesian setting, we can conveniently express what is meant by such directions in
terms of the prior precision matrix Λ. In particular, ‘flat’ directions of the prior (low precision) correspond
to directions that will not significantly affect the performance on previous tasks. Formally, we derive NCL as
the solution of a trust region optimization problem. This involves maximizing the posterior loss Lk(θ) within
a region of radius r centered around θ with a distance metric of the form d(θ,θ+ ∆) =

√
∆>Λk−1∆/2 that

4

takes into account the curvature of the prior via its precision matrix Λk−1:

∆ = arg min
∆

Lk(θ) +∇θLk(θ)>∆ subject to 1
2∆>Λk−1∆ ≤ r2, (7)

where Lk(θ+∆) ≈ Lk(θ)+∇θLk(θ)>∆ is a first-order approximation to the updated Laplace objective. The
solution to this subproblem is given by ∆ ∝ Λ−1

k−1∇θ`k(θ)− (θ − µk−1) (see Appendix A for a derivation),
which gives rise to the NCL update rule

θ ← θ + γ
[
Λ−1
k−1∇θ`k(θ)− (θ − µk−1)

]
(8)

for a learning rate parameter γ (which is implicitly a function of r in Equation 8). To get some intuition for
this learning rule, we note that Λk−1 acts as a preconditioner for the first (likelihood) term which drives
learning on the current task while encouraging parameter changes predominantly in directions that do not
interfere with previous tasks. Meanwhile, the second term encourages θ to stay close to µk−1, the optimal
parameters for the previous task. As we illustrate in Figure 1, this combines the desirable features of both
Bayesian weight regularization and projection based methods. In particular, NCL shares the fixed points
of the Bayesian posterior while also mitigating intermediate or complete forgetting of previous tasks by
preconditioning with the prior covariance. Notably, if the loss landscape is non-convex (as it generally will
be), NCL can converge to a different local optimum from standard weight regularization (Figure 1B).

Implementation In this work, we use a Kronecker-factored approximation to each Fisher matrix Fk in
Equation 6 (Martens and Grosse, 2015; Ritter et al., 2018), although we note that the general NCL framework
can be applied with other approximations to Fk such as the diagonal approximation of Kirkpatrick et al. (2017).
A major challenge in implementing NCL lies in the computation of Λ−1

k−1, which is generally intractable for
large models. Even after making a Kronecker-factored approximation to Fk for each task k, it remains difficult
to compute the inverse of a sum of k Kronecker products (c.f. Equation 5). To address this challenge, we
derived an efficient algorithm for making a Kronecker-factored approximation to Λk = Fk + Λk−1 ≈ Lk ⊗Rk

when Λk−1 = Lk−1 ⊗Rk−1 and Fk are also Kronecker products. This approximation minimizes the KL-
divergence between N (µk, (Lk ⊗ Rk)−1) and N (µk, (Λk−1 + Fk)−1) (see Appendix C for details). The
NCL algorithm is described in pseudocode in Appendix B together with additional implementation and
computational details. Finally, while we have derived NCL with a Laplace approximation in this section for
simplicity, it can similarly be applied in the variational continual learning framework of Nguyen et al. (2017)
(Appendix I).

2.3 Related work

As discussed in Section 2.1, our method is derived from prior work that relies on Bayesian inference to perform
weight regularization for continual learning (Kirkpatrick et al., 2017; Nguyen et al., 2017; Huszár, 2017; Ritter
et al., 2018). However, we also take inspiration from the literature on natural gradient descent (Amari, 1998;
Kunstner et al., 2019) to introduce a preconditioner that encourages parameter updates primarily in flat
directions of previously learned tasks (Appendix F).
Recent projection based methods (Duncker et al., 2020; Zeng et al., 2019) have addressed the continual
learning problem using an update rule of the form

θ ← θ + γPL∇θ`k(θ)PR, (9)

where PL and PR are projection matrices constructed from previous tasks which encourage parameter updates
that do not interfere with performance on these tasks. Using Kronecker identities, we can rewrite Equation 9
as

θ ← θ + γ(PR ⊗ PL)∇θ`k(θ). (10)

This resembles the NCL update rule in Equation 8 where we identify PR ⊗ PL with the approximate inverse
prior precision matrix used for gradient preconditioning in NCL Λ−1

k−1 = L−1
k−1 ⊗R

−1
k−1. Indeed, we note that

5

for a Kronecker-structured approximation to Fk, the matrix Lk−1 is the empirical covariance matrix of the
network activations experienced during all tasks up to k − 1 (Martens and Grosse, 2015; Bernacchia et al.,
2018, Appendix D) which is exactly the inverse of the projection matrix used in previous work (Duncker
et al., 2020; Zeng et al., 2019). We thus see that NCL takes the form of recent projection based continual
learning algorithms with two notable differences:
(i) NCL uses a right Kronecker factor Rk−1 designed to approximate the posterior precision of previous tasks
(Appendix D) while Duncker et al. (2020) use the covariance of recurrent inputs and Zeng et al. (2019) use
the identity matrix I. Notably, both of these choices of Rk−1 still provide reasonable approximations to the
prior Fisher matrix which can be used to motivate OWM and DOWM as projecting out steep directions of
the prior (Appendix E).
(ii) NCL includes an additional regularization term (θ − µk−1) derived from the Bayesian posterior objective
while Duncker et al. (2020) and Zeng et al. (2019) do not use such regularization. Importantly, this means
that while NCL has a similar preconditioner and optimization path to these projection based methods, NCL
has stationary points at the modes of the approximate Bayesian posterior while the stationary points of
OWM and DOWM do not incorporate prior information from previous tasks (c.f. Figure 1).
It is also interesting to note that previous Bayesian continual learning algorithms include a hyperparameter λ
that scales the prior compared to the likelihood term for the current task (Loo et al., 2020):

L(λ)
k (θ) = log p(Dk|θ)− λ(θ − µk−1)>Λk−1(θ − µk−1). (11)

To minimize this loss and thus find a mode of the approximate posterior, it is common to employ pseudo-
second-order stochastic gradient-based optimization algorithms such as Adam (Kingma and Ba, 2014) that
use their own gradient preconditioner based on an approximation to the Hessian of Equation 11. Interestingly,
this Hessian is given by Hk = −H(Dk,θ) − λΛk−1, which in the limit of large λ becomes increasingly
similar to preconditioning with the prior precision as in NCL. Consistent with this, previous work using the
online Laplace approximation has found that large values of λ are generally required for good performance
(Kirkpatrick et al., 2017; Ritter et al., 2018; Van de Ven and Tolias, 2018). Recent work has also combined
Bayesian continual learning with natural gradient descent (Osawa et al., 2019; Tseran et al., 2018), and in
this case a relatively high value of λ = 100 was similarly found to maximize performance (Osawa et al., 2019).

3 Experiments and results

3.1 NCL in recurrent neural networks

As discussed in Section 1, we consider experiments in recurrent neural networks (RNNs), a setting that has
recently proven challenging for continual learning (Duncker et al., 2020; Ehret et al., 2020). Here, we briefly
describe the network dynamics and how the NCL algorithm (Section 2.2) is implemented.

Network dynamics The dynamics of the RNN used in this work can be described by the following
equations:

ht = Art−1 +Bxt + ξt = Wzt + ξt (12)
yt ∼ p(yt|Crt) (13)

where we define rt = φ(ht), zt = (r>t−1,x
>
t)>,W = (A>,B>)>, and time is indexed by t. Here, r ∈ RNrec×1

are the network activations, x ∈ Rnin×1 are the inputs, and y ∈ Rnout×1 are the network outputs. The
noise model p(yt|Crt) may be a Gaussian distribution for a regression task or a categorical distribution for
a classification task, and φ(h) is a nonlinearity that is applied to h element-wise (in this work the ReLU
function). The parameters of the RNN are given by θ = (W ,C). The process noise {ξt} are zero-mean
Gaussian random variables with covariance matrices Σξt . In this model, the log-likelihood of observing a
sequence of outputs y1, . . . ,yT given inputs x1, . . . ,xT and ξ1, . . . , ξT is given by

`(θ) = log pθ({y}|{x}, {ξ}) = log p({y}|{Cr}), (14)

6

0 100 200
iteration (x1000)

10 2

10 1

100

lo
ss

A NCL (ours)
task 1 task 2 task 3 task 4 task 5 task 6 mean

0 100 200
iteration (x1000)

B DOWM

0 100 200
iteration (x1000)

C OWM

0 100 200
iteration (x1000)

D KFAC

Figure 2: Continual learning on stimulus-response tasks. Evolution of the loss during training for
each of the six stimulus-response tasks for NCL (A), DOWM (B), OWM (C), and KFAC with λ = 1 (D).
Coloured lines and shadings indicate mean and stdev for each task across 5 random seeds. Black lines indicate
the mean loss over all tasks at the end of training. Task order matches that of Duncker et al. (2020). Note
that the earlier tasks are also ‘easier’ in a non-continual setting (Yang et al., 2019).

Kronecker-factored approximation to the FIMs We use a Kronecker-factored approximation to the
Fisher information matrix of `(θ) with respect to the parameters C and W (see Appendix D or section 3.4
of Martens et al., 2018 for details). Defining x := ∂`/∂vec(X), we approximate the FIMs of C and W as:

FC = E{(ξ,x,y)}∼M
[
c c>

]
≈ E [T] E{(ξ,x,y)}∼M

[
rr>

]
⊗ E{(ξ,x,y)}∼M

[
y y>

]
(15)

FW = E{(ξ,x,y)}∼M
[
ww>

]
≈ E [T] E{(ξ,x,y)}∼M

[
zz>

]
⊗ E{(ξ,x,y)}∼M

[
hh
>]

, (16)

where E [T] is the expected length of each input-output sequence, and we take {(ξ,x,y)} ∼ M to mean that
{ξ}, {x} and {y} are drawn from the model distribution defined in Equation 12.

3.2 Stimulus-response tasks

In this section, we compare different methods for continual learning on a set of neuroscience inspired
‘stimulus-response’ (SR) tasks (Yang et al., 2019; details in Appendix G).
Following previous work, we first considered RNNs with 256 units (Yang et al., 2009; Duncker et al., 2020).
While NCL, OWM and DOWM all managed to learn the six tasks without catastrophic forgetting (Figure 2A–
C), we found that NCL achieved superior average performance across all tasks after training (Figure 3A). We
then compared NCL, OWM, and DOWM to KFAC, an online Laplace algorithm that uses Adam (Kingma and
Ba, 2014) to optimize the objective in Equation 4 with a Kronecker-factored approximation to the precision
matrix in Equation 5 (Section 2.1; Ritter et al., 2018). Consistent with the results shown in Duncker et al.
(2020), we found that NCL, OWM, and DOWM outperformed KFAC (Figure 2D; see also Duncker et al.,
2020 for a comparison of DOWM and EWC). We note that NCL and KFAC optimize the same objective
function (Equation 4) and approximate the posterior precision matrix in the same way, but differ in the way
they precondition the gradient of the objective. Our results thus demonstrate empirically that the choice of
optimization algorithm is important to prevent forgetting, consistent with the intuition provided by Figure 1.
In previous work, poor performance with weight regularization approaches such as EWC and KFAC has been
mitigated by introducing a hyperparameter λ that increases the importance of the prior term compared to a
standard Bayesian treatment (Equation 11; Kirkpatrick et al., 2017; Ritter et al., 2018; Loo et al., 2020).
We confirmed this here by performing a grid search over λ, which showed that KFAC with λ ∈ [100, 1000]
could perform almost as well as NCL (Section H.1; Figure 3A). We hypothesize that the good performance
provided by high λ is partly due to the approximate second order nature of Adam which, together with
the relative increase in the prior term compared to the data term, leads to preconditioning with a matrix
resembling the prior Λk−1 (Section 2.3). In support of this hypothesis, we found that the KL divergence
between the Adam preconditioner and the approximate prior precision Λk−1 decreased with increasing λ,
and that the performance of KFAC with Adam could also be rescued by increasing λ only when computing
the preconditioner while retaining λ = 1 when computing the gradients (Section H.1).

7

NCL (
ou

rs)

DOWM
OWM

KF
AC (op

t)

KF
AC (

= 1)

0.03

0.04

0.05
lo

ss
A SR (256)

0.56

NCL (
ou

rs)

DOWM
OWM

KF
AC (op

t)

KF
AC (

= 1)

0.1

0.2

lo
ss

B SR (50)
0.38

NCL (
ou

rs)

DOWM
OWM

KF
AC (op

t)

KF
AC (

= 1)
0.05

0.10

0.15

cla
ss

ifi
ca

tio
n

er
ro

r

C SMNIST
0.24

1 5 10 15
task number

0.05

0.00

0.05

0.10

0.15

 e
rro

r

D SMNIST

Figure 3: Performance on SR and SMNIST tasks. (A) Mean loss of NCL, DOWM, OWM, KFAC
(optimal λ), and KFAC (λ = 1) across stimulus-response tasks for RNNs with 256 units. Here and in (B)
and (C), KFAC with λ = 1 failed catastrophically and its performance is indicated in text as it does not fit
on the axes. (B) As in (A), now for networks with 50 units. Error bars in (A) and (B) indicate standard
error (s.e.m) across 5 random seeds. (C) Mean classification error across SMNIST tasks for networks with 30
hidden units. (D) Difference between the mean classification error of Laplace-DOWM and NCL as a function
of task number. Error bars in (C) and (D) indicate s.e.m. across 100 random task permutations.

Duncker et al. have previously shown that the dynamics of RNNs trained to perform the SR tasks of Figure 2
are low dimensional, suggesting that 256 units may not be needed to learn the tasks in a continual fashion.
We therefore reduced the network size to 50 units to further challenge the continual learning algorithms. We
found that NCL outperformed both DOWM and OWM, suggesting that a good approximation to the Fisher
matrix is particularly important in more challenging settings (Figure 3B; Section H.2).

3.3 Stroke MNIST

Another way to challenge the CL algorithms further is to increase the number of tasks. We thus considered
an augmented version of the stroke MNIST dataset (SMNIST; de Jong, 2016). The original dataset consists
of the MNIST digits transformed into pen strokes with the direction of the stroke at each time point provided
as inputs to the network. Similar to Ehret et al. (2020), we constructed a continual learning problem by
considering consecutive binary classification tasks inspired by the canonical split MNIST task set. We further
increased the number of tasks by including a set of extra digits where the x and y dimensions have been
swapped in the input stroke data, and another set where both the x and y dimensions have changed sign. We
also added high-variance noise to the inputs to increase the task difficulty. This gave rise to a total of 15
binary classification tasks, each with unique digits not used in other tasks, which we sought to learn in a
continual fashion using an RNN with 30 recurrent units (see Appendix G for details).
As for the SR task set in Section 3.2, we found that NCL outperformed previous projection based methods
(Figure 3C). We again found that weight regularization with a KFAC approximation performed poorly with
λ = 1, and that this poor performance could be partially rescued by optimizing over λ (Figure 3C). To
investigate how the difference in performance between NCL and DOWM was affected by their different
approximations to the Fisher matrix (Appendix E), we implemented NCL using the DOWM projection
matrices as an alternative approximation to the inverse Fisher matrix. We refer to this method as Laplace-
DOWM. We then considered how the performance on each task at the end of training depended on task number,
averaged over different task permutations (Figure 3D). We found that while Laplace-DOWM outperformed
NCL on the first task, this method generally performed worse on subsequent tasks. Notably, Laplace-DOWM
exhibited a near-monotonic decrease in relative performance with task number which is consistent with the
intuition that DOWM overestimates the dimensionality of the parameter subspace that matters for previous
tasks (Appendix E). In contrast, although neural circuits are known to use orthogonal subspaces in different
contexts, there is no general sense that learning more tasks in the past should systematically hinder learning
in future contexts for biological agents.

8

4
vs

 5
1

vs
 7

r2 = 0.14

k = 1

r2 = 1.0

k = 2

r2 = 1.0

k = 3

r2 = 0.98

k = 6

r2 = 0.95

k = 10

r2 = 0.95

k = 15

r2 = 0.0 r2 = 0.05 r2 = 1.0 r2 = 1.0 r2 = 0.99 r2 = 0.99

task 4/5
learned

task 1/7
learned

Figure 4: Latent dynamics during SMNIST. We considered two example tasks, 4 vs 5 (top) and 1 vs 7
(bottom). For each task, we simulated the response of a network trained by NCL to 100 digits drawn from
that task distribution at different times during learning. We then fitted a factor analysis model for each
example task to the response of the network right after the correponding task had been learned (squares;
k = 2 and k = 3 respectively). We used this model to project the responses at different times during learning
into a common latent space for each example task. For both example tasks, the network initially exhibited
variable dynamics with no clear separation of inputs and subsequently acquired stable dynamics after learning
to solve the task. The r2 values above each plot indicate the similarity of neural population activity with
that collected immediately after learning the corresponding task, quantified across all neurons (not just the
2D projection).

3.4 Dissecting the dynamics of networks trained on the SMNIST task set

To further investigate how the RNNs solve the continual learning problems and how this relates to the
neuroscience literature, we dissected the dynamics of networks trained on the SMNIST task set using the
NCL algorithm (see Section H.4 for an equivalent analysis with DOWM). To do this, we analyzed latent
representations of the RNN activity trajectories, as is commonly done to study the collective dynamics of
artificial and biological networks (Yu et al., 2009; Gallego et al., 2020; Jensen et al., 2020; Mante et al., 2013;
Jensen et al., 2021). We considered two consecutive classification tasks, namely classifying 4’s vs 5’s (k = 2)
and classifying 1’s vs 7’s (k = 3). For each of these tasks, we trained a factor analysis model right after the
task was learned, using network activity collected while presenting 50 examples of each of the two input digits
associated with the task. We then tracked the network responses to the same set of stimuli at various stages
of learning, both before and after the task in question was acquired, using the trained factor analysis model
to visualize low-dimensional summaries of the dynamics (Figure 4).
Consistent with the network having successfully learned to solve these two tasks, we found that latent
trajectories diverged over time for the two types of inputs in each task. Critically, these diverging dynamics
only emerged after the task was learned, and remained highly stable thereafter (Figure 4). The stability of
the task-associated representations is consistent with recent work in the neuroscience literature showing that,
in a primate reaching task, latent neural trajectories remain stable after learning (Gallego et al., 2020). Since
here we have access to the activity of all neurons throughout the task, we proceeded to quantify the source
of this stability at the level of single units. The stability of such single-neuron dynamics after learning has
recently been a topic of contention in biological circuits (Clopath et al., 2017; Lütcke et al., 2013). In the
RNNs, we found that the single-unit representations of a given digit changed during learning of the task
involving that digit, but stabilized after learning, consistent with work in several distinct biological circuits
(Peters et al., 2014; Katlowitz et al., 2018; Dhawale et al., 2017; Chestek et al., 2007; Ganguly and Carmena,
2009).

9

4 Discussion

In summary, we have developed a new framework for continual learning based on approximate Bayesian
inference combined with trust-region optimization. We showed that this framework encompasses recent
projection based methods and found that it performs better than naive weight regularization in a recurrent
neural network setting which has previously been shown to be challenging for various continual learning
algorithms (Duncker et al., 2020; Ehret et al., 2020). Furthermore, we showed that our principled probabilistic
approach outperforms previous projection based methods (Duncker et al., 2020; Zeng et al., 2019), in particular
when the number of tasks and their complexity challenges the network’s capacity. Finally, we analyzed the
dynamics of the learned networks in a sequential binary classification problem where we found that the
latent dynamics adapt to each new task. We also found that the task-associated dynamics were subsequently
conserved during further learning, consistent with experimental reports of stable neural representations
(Dhawale et al., 2017; Gallego et al., 2020). Importantly, our results suggest that preconditioning with the
prior covariance can lead to improved performance over existing continual learning algorithms. In future
work, it will therefore be interesting to use NCL with other weight regularization approaches such as EWC
(Kirkpatrick et al., 2017), and to extend its use to feedforward neural networks. Finally, a separate branch of
continual learning utilizes generative replay or functional regularization based on previous data and models
(Van de Ven and Tolias, 2018; Pan et al., 2020; Li and Hoiem, 2017; Shin et al., 2017). While our work has
focused on weight regularization, such regularization and replay is not mutually exclusive. Instead, these
two approaches have been found to further improve robustness to catastrophic forgetting when combined
(Nguyen et al., 2017; van de Ven et al., 2020).

Acknowledgements

We are grateful to Gido van de Ven, Siddharth Swaroop, Lea Duncker, Laura Driscoll, Naama Kadmon
Harpaz, and Yashar Ahmadian for insightful discussions. We thank Gido van de Ven, Siddharth Swaroop,
and Robert Pinsler for useful comments on the manuscript.

References
Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation, 10(2):251–276.

Ames, K. C. and Churchland, M. M. (2019). Motor cortex signals for each arm are mixed across hemispheres
and neurons yet partitioned within the population response. Elife, 8:e46159.

Bernacchia, A., Lengyel, M., and Hennequin, G. (2018). Exact natural gradient in deep linear networks and
its application to the nonlinear case. Advances in Neural Information Processing Systems, 31:5941–5950.

Chestek, C. A., Batista, A. P., Santhanam, G., Byron, M. Y., Afshar, A., Cunningham, J. P., Gilja, V., Ryu,
S. I., Churchland, M. M., and Shenoy, K. V. (2007). Single-neuron stability during repeated reaching in
macaque premotor cortex. Journal of Neuroscience, 27(40):10742–10750.

Clopath, C., Bonhoeffer, T., Hübener, M., and Rose, T. (2017). Variance and invariance of neuronal long-term
representations. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1715):20160161.

de Jong, E. D. (2016). Incremental sequence learning. arXiv preprint arXiv:1611.03068.

Dhawale, A. K., Poddar, R., Wolff, S. B., Normand, V. A., Kopelowitz, E., and Ölveczky, B. P. (2017).
Automated long-term recording and analysis of neural activity in behaving animals. Elife, 6:e27702.

Duncker, L., Driscoll, L., Shenoy, K. V., Sahani, M., and Sussillo, D. (2020). Organizing recurrent network
dynamics by task-computation to enable continual learning. Advances in Neural Information Processing
Systems, 33.

10

Ehret, B., Henning, C., Cervera, M. R., Meulemans, A., von Oswald, J., and Grewe, B. F. (2020). Continual
learning in recurrent neural networks with hypernetworks. arXiv preprint arXiv:2006.12109.

Failor, S. W., Carandini, M., and Harris, K. D. (2021). Learning orthogonalizes visual cortical population
codes. bioRxiv.

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., and Miller, L. E. (2020). Long-term stability of
cortical population dynamics underlying consistent behavior. Nature neuroscience, 23(2):260–270.

Ganguly, K. and Carmena, J. M. (2009). Emergence of a stable cortical map for neuroprosthetic control.
PLoS Biol, 7(7):e1000153.

Huszár, F. (2017). On quadratic penalties in elastic weight consolidation. arXiv preprint arXiv:1712.03847.

Jensen, K., Kao, T.-C., Tripodi, M., and Hennequin, G. (2020). Manifold GPLVMs for discovering non-
euclidean latent structure in neural data. Advances in Neural Information Processing Systems, 33.

Jensen, K. T., Kao, T.-C., Stone, J. T., and Hennequin, G. (2021). Scalable Bayesian GPFA with automatic
relevance determination and discrete noise models. bioRxiv.

Katlowitz, K. A., Picardo, M. A., and Long, M. A. (2018). Stable sequential activity underlying the
maintenance of a precisely executed skilled behavior. Neuron, 98(6):1133–1140.

Kaufman, M. T., Churchland, M. M., Ryu, S. I., and Shenoy, K. V. (2014). Cortical activity in the null space:
permitting preparation without movement. Nature neuroscience, 17(3):440–448.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526.

Kunstner, F., Balles, L., and Hennig, P. (2019). Limitations of the empirical fisher approximation for natural
gradient descent. arXiv preprint arXiv:1905.12558.

Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947.

Loo, N., Swaroop, S., and Turner, R. E. (2020). Generalized variational continual learning. arXiv preprint
arXiv:2011.12328.

Lütcke, H., Margolis, D. J., and Helmchen, F. (2013). Steady or changing? long-term monitoring of neuronal
population activity. Trends in neurosciences, 36(7):375–384.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent computation by
recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84.

Martens, J. (2014). New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193.

Martens, J., Ba, J., and Johnson, M. (2018). Kronecker-factored curvature approximations for recurrent
neural networks. In International Conference on Learning Representations.

Martens, J. and Grosse, R. (2015). Optimizing neural networks with kronecker-factored approximate curvature.
In ICML, pages 2408–2417.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational continual learning. arXiv preprint
arXiv:1710.10628.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan, M. E. (2019).
Practical deep learning with Bayesian principles. arXiv preprint arXiv:1906.02506.

11

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E., and Khan, M. E. (2020). Continual deep
learning by functional regularisation of memorable past. arXiv preprint arXiv:2004.14070.

Peters, A. J., Chen, S. X., and Komiyama, T. (2014). Emergence of reproducible spatiotemporal activity
during motor learning. Nature, 510(7504):263–267.

Ritter, H., Botev, A., and Barber, D. (2018). Online structured laplace approximations for overcoming
catastrophic forgetting. arXiv preprint arXiv:1805.07810.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative replay. arXiv
preprint arXiv:1705.08690.

Tseran, H., Khan, M. E., Harada, T., and Bui, T. D. (2018). Natural variational continual learning. In
Continual Learning Workshop@ NeurIPS, volume 2.

van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. (2020). Brain-inspired replay for continual learning
with artificial neural networks. Nature communications, 11(1):1–14.

Van de Ven, G. M. and Tolias, A. S. (2018). Generative replay with feedback connections as a general strategy
for continual learning. arXiv preprint arXiv:1809.10635.

von Oswald, J., Henning, C., Sacramento, J., and Grewe, B. F. (2019). Continual learning with hypernetworks.
arXiv preprint arXiv:1906.00695.

Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Jones, T., and Zuo, Y. (2009). Rapid
formation and selective stabilization of synapses for enduring motor memories. Nature, 462(7275):915–919.

Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong
memories. Nature, 462(7275):920–924.

Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., and Wang, X.-J. (2019). Task representations in
neural networks trained to perform many cognitive tasks. Nature neuroscience, 22(2):297–306.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M. (2009). Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural population activity. Journal of
neurophysiology, 102(1):614–635.

Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of context-dependent processing in neural
networks. Nature Machine Intelligence, 1(8):364–372.

12

Appendix – Natural continual learning

A Derivation of the NCL learning rule

In this section, we provide further details of how the NCL learning rule in Section 2.2 is derived and also
provide an alternative derivation of the algorithm.

NCL learning rule As discussed in Section 2.2, we derive NCL as the solution of a trust region optimization
problem. That is, we maximize the posterior loss Lk(θ) within a region of radius r centered around θ with a
distance metric of the form d(θ,θ + ∆) =

√
∆>Λk−1∆/2. This distance metric was chosen to take into

account the curvature of the prior via its precision matrix Λk−1 and encourage parameter updates that do
not affect performance on previous tasks. Formally, we solve the optimization problem

∆ = arg min
∆

Lk(θ) +∇θLk(θ)>∆ subject to 1
2∆>Λk−1∆ ≤ r2, (17)

where Lk(θ + ∆) ≈ Lk(θ) +∇θLk(θ)>∆ is a first-order approximation to the updated Laplace objective.
Here we recall from Equation 4 that

Lk(θ) = `k(θ)− 1
2(θ − µk−1)TΛk−1(θ − µk−1) (18)

from which we get
∇θLk(θ)>∆ = ∇θ`k(θ)>∆− (θ − µk−1)>Λk−1∆ (19)

The optimization in Equation 17 is carried out by introducing a Lagrange multiplier η to construct a
Lagrangian L̃:

L̃(∆, η) = Lk(θ) +∇θ`k(θ)>∆− (θ − µk−1)>Λk−1∆ + η(r2 − 1
2∆>Λk−1∆). (20)

We then take the derivative of L̃ w.r.t. ∆ and set it to zero:

∇∆L̃(∆, η) = ∇θ`k(θ)−Λk−1(θ − µk−1)− ηΛk−1∆′ = 0. (21)

Rearranging this equation gives

∆ = 1
η

[
Λ−1
k−1∇θ`k(θ)− (θ − µk−1),

]
. (22)

where η itself depends on r2 implicitly. Finally we define a learning rate parameter γ = 1/η and arrive at the
NCL learning rule:

θ ← θ + γ
[
Λ−1
k−1∇θ`k(θ)− (θ − µk−1)

]
. (23)

Alternative derivation Here, we present an alternative derivation of the NCL learning rule. In this
formulation we seek to update the parameters of our model on task k by maximizing Lk(θ) subject to a
constraint on the allowed change in the prior term. To find our parameter updates ∆, we again solve a
constrained optimization problem:

∆ = arg min
∆

Lk(θ) +∇θLk(θ)>∆ such that C(∆) ≤ r2. (24)

Here we define C(∆) as the approximate change in log probability under the prior

C(∆) = (θ + ∆− µk−1)>Λk−1(θ + ∆− µk−1)− (θ − µk−1)>Λk−1(θ − µk−1). (25)

1

Following a similar derivation to above, we find the solution to this optimization problem as

η∆ = Λ−1
k−1∇θLk(θ)− η(θ − µk−1) = Λ−1

k−1∇θ`k(θ)− (1 + η)(θ − µk−1) (26)

for some Lagrange multiplier η. This gives rise to the update rule

θ ← θ + γ
[
Λ−1
k−1∇θ`k(θ)− λ(θ − µk−1)

]
(27)

for a learning rate parameter γ and some choice of the parameter λ that depends on both η and γ. We
recover the learning rule derived in Section 2.2 with the choice of λ = 1. In practice, λ can also be treated as
a hyperparameter to be optimized (Section H.1).

B Implementation

In this section we discuss various implementation details for NCL and provide an overview of the algorithm
in the form of pseudocode (Algorithm 1). In particular, we use momentum ρ = 0.9 in all our experiments
involving NCL as is done in Duncker et al. (2020). We found that the use of momentum greatly speeds up
convergence in practice.

Algorithm 1: Natural continual learning with momentum
1 input: {Dk}Kk=1, α, pw (prior), nb (batch size), γ (learning rate), W0, C0, ρ
2 initialize: LW ← pwI, RW ← pwI, LC ← pwI, RC ← pwI
3 initialize: W1 ←W0, C1 ← C0
4 initialize: MW ← zeros_like(W0), MC ← zeros_like(C0) // Gradient momentum
5 for k = 1 . . .K do
6 while not converged do
7 {x(i),y(i)}nb

i=1 ∼ Dk // Input and target output
8 for i = 1, . . . , nb do
9 ŷ(i) = RNN(x(i),Wk,Ck) // Empirical output

10 ` = 1
nb

∑nb

i log p(y(i)
t |ŷ

(i)
t) // Loss

11
12 % Build up momentum
13 MW ← ρMW +∇W `+RW (Wk −Wk−1)LW
14 MC ← ρMC +∇C`+RC(Ck −Ck−1)LC
15
16 % Update model parameters
17 Wk ←Wk − γp2

w

[
(RW + αI)−1 MW (LW + αI)−1]

18 Ck ← Ck − γp2
w

[
(RC + αI)−1 MC(LC + αI)−1]

19 % Update Fisher matrix components
20 compute E

[
hh
>] and E

[
y y>

]
using Algorithm 2

21 LW , RW ← nearest_kf(LW ⊗RW + E [T]E
[
zz>

]
⊗ E

[
hh
>]) // Appendix C

22 LC , RC ← nearest_kf(LC ⊗RC + E [T]E
[
rr>

]
⊗ E

[
y y>

]
)

For NCL, we set the prior over the parameters W and C when learning the first task as p(vec(W)) =
N (0; p−2

w I) and p(vec(C)) = N (0; p−2
w I) respectively. In particular, we set p−2

w to be approximately the
number of samples that the learner sees in each task, corresponding to a unit Gaussian prior before normalizing
our precision matrices by the amount of data seen in each task (here, p−2

w = 106 for the stimulus-response
task and p−2

w = 6000 for SMNIST).
All models were trained on single GPUs with training times of 10-100 minutes depending on the task set and
model size. We used a training batch size of 32 for the stimulus-response tasks and 256 for the SMNIST

2

tasks. In all cases, we used a test batch size of 2048 for evaluation and for computing projection and Fisher
matrices. We used a learning rate of γ = 0.01 for SMNIST and γ = 0.005 for the stimulus-response tasks
across all projection based methods. We used a learning rate of 0.001 for KFAC with Adam. All models
were trained on 106 data samples per task. A hyperparameter optimization over α for the projection based
methods and λ for KFAC with Adam is provided in Section H.3.

Algorithm 2: Estimating E
[
hh
>]

,E
[
y y>

]
1 input: {{(xt, ξt)}Ti

t=1}
nb
i=1, W , C , n,m

2
3 initialize:
4 ĥ

(i)
t ← zeros(n, 1) ∀t, k

5 ŷ
(i)
t ← zeros(m, 1) ∀t, k

6
7 % Sample targets from the model
8 for i = 1 . . . nb do
9 for t = 1 . . . Ti do

10 ht = W [rt−1;x(i)
t]

11 rt = φ(ht + ξ(i)
t)

12 y
(i)
t ∼ p(yt|Crt) // sample from observation model

13 % Compute adjoints
14 for i = 1 . . . nb do
15 for t = 1 . . . Ti do
16 ht = W [rt−1;x(i)

t] + ĥ(i)
t

17 rt = φ(ht + ξ(i)
t)

18 `
(i)
t = log p(y(i)

t |Crt + ŷ(i)
t)

19 ` =
∑nb
i=1
∑Ti

t=1 `
(i)
t /nb

20 % Compute adjoints of ĥ(i)
t and ŷ(i)

t with respect to ` via automatic differentiation
21 h

(i)
t ← adjoint of ĥ(i)

t , y
(i)
t ← adjoint of ŷ(i)

t

22 E
[
hh
>] ≈∑nb

i=1
∑Ti

t=1 h
(i)
t (h(i)

t)>/(nb E [T])

23 E
[
y y>

]
≈
∑nb
i=1
∑Ti

t=1 y
(i)
t (y(i)

t)>/(nb E [T])

C Kronecker-factored approximation to the sums of Kronecker
Products

In this section, we consider three different Kronecker-factored approximations to the sum of two Kronecker
products:

X ⊗ Y ≈ Z = A⊗B +C ⊗D. (28)

In particular, we consider the special case where A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×n, and D ∈ Rm×m are
symmetric positive-definite. Z will not in general be a Kronecker product, but for computational reasons it
is desirable to approximate it as one to avoid computing or storing a full-sized precision matrix.

3

Scaled additive approximation The first approximation we consider was proposed by Martens and
Grosse (2015). They propose to approximate the sum with

Z ≈ (A+ πC)⊗ (B + 1
π
D), (29)

where π is a scalar parameter. Using the triangle inequality, Martens and Grosse (2015) derived an upper-
bound to the norm of the approximation error

‖Z − (A+ πC)⊗ (B + 1
π
D)‖ (30)

= ‖ 1
π
A⊗D + πC ⊗B‖ (31)

≤ 1
π
‖A⊗D‖+ π‖C ⊗B‖ (32)

for any norm ‖ · ‖. They then minimize this upper-bound with respect to π to find the optimal π:

π =

√
‖C ⊗B‖
‖A⊗D‖

. (33)

As in (Martens and Grosse, 2015), we use a trace norm in bounding the approximation error, and noting that
Tr(X ⊗ Y) = Tr(X)Tr(Y), we can compute the optimal π as:

π =

√
Tr(B)Tr(C)
Tr(A)Tr(D) . (34)

Minimal mean-squared error The second approximation we consider was originally proposed by
Van Loan and Pitsianis (1993). In this case, we approximate the sum of Kronecker products by mini-
mizing a mean squared loss:

X,Y = arg min
X,Y

‖Z −X ⊗ Y ‖2
F (35)

= arg min
X,Y

‖R(A⊗B) +R(C ⊗D)−R(X ⊗ Y)‖2
F (36)

= arg min
X,Y

‖vec(A)vec(B)> + vec(C)vec(D)> − vec(X)vec(Y)>‖2
F , (37)

where R(A ⊗B) = vec(A)vec(B)> is the rearrangement operator (Van Loan and Pitsianis, 1993). The
optimization problem thus involves finding the best rank-one approximation to a rank-2 matrix. This can be
solved efficiently using a singular value decomposition (SVD) without ever constructing an n2 ×m2 matrix
(see Algorithm 3 for details).

Algorithm 3: Mean-squared error approximation of the sum of Kronecker products
1 input: A, B, C, D
2 a← vec(A), b← vec(B), c← vec(C), d← vec(D) // Vectorize A,B,C,D

3 Q,_← QR(
[
a; c

]
) // Orthogonal basis for a and c in Rn2×2

4 H ← (Q>a)b> + (Q>c)d>
5 U , s,V > ← SVD(H)
6 y ← first column of √s1V
7 x← first column of √s1QU
8 X ← reshape(x, (n, n)), Y ← reshape(y, (m,m))

4

Minimal KL-divergence In this paper, we propose an alternative approximation to Z motivated by the
fact that X⊗Y is meant to approximate the precision matrix of the approximate posterior after learning task
k. We thus define two multivariate Gaussian distributions q(w) = N (w;µ,X ⊗ Y) and p(w) = N (w;µ,Z)
(note that the mean of these distributions are found in NCL by gradient-based optimization). We are
interested in finding the matrices X and Y that minimize the KL-divergence between the two distributions

2DKL(q||p) = log |X ⊗ Y | − log |Z|+ Tr(Z(X ⊗ Y)−1)− d (38)
= m log |X|+ n log |Y |+ Tr(AX−1 ⊗BY −1) + Tr(CX−1 ⊗DY −1)− d (39)
= −m log |X−1| − n log |Y −1|+ Tr(AX−1)Tr(BY −1) (40)

+ Tr(CX−1)Tr(DY −1)− d (41)

where d = nm. Differentiating with respect to X−1, and Y −1 and setting the result to zero, we get

0 = ∂DKL(q||p)
∂X−1 = 1

2
[
−mX + Tr(BY −1)A+ Tr(DY −1)C

]
(42)

0 = ∂DKL(q||p)
∂Y −1 = 1

2
[
−nY + Tr(AX−1)B + Tr(CX−1)D

]
. (43)

Rearranging these equations, we find the self-consistency equations:

X = 1
m

[
Tr(BY −1)A+ Tr(DY −1)C

]
(44)

Y = 1
n

[
Tr(AX−1)B + Tr(DX−1)D

]
. (45)

This shows that the optimal X (Y) is a linear combination of A and C (B and D). It is unclear whether
we can solve for X and Y analytically in Equation 44 and Equation 45. However, we can find X and Y
numerically by iteratively applying the following update rules:

Xk+1 = (1− β)Xk + β

m

(
Tr(BY −1

k)A+ Tr(DY −1
k)C

)
(46)

Yk+1 = (1− β)Yk + β

n

(
Tr(AX−1

k)C + Tr(CX−1
k)D

)
(47)

for initial guesses X0 and Y0. In practice, we initialize using the scaled additive approximation and find that
the algorithm converges with β = 0.3 after tens of iterations.

Comparisons To compare different approximations of the precision matrix to the posterior, we consider
Kronecker structured Fisher matrices from (i) a random RNN model, (ii) the Fishers learned in the stimulus-
response tasks, and (iii) the Fishers learned in the SMNIST tasks. We then iteratively update Λk ≈ Λk−1 +Fk,
approximating this sum using each of the approaches described above as well as a naive unweighted sum of the
pairs of Kronecker factors. We compare these approximations using three different metrics: the correlation
with the true sum of Kronecker products

∑k
k′ Fk′ (Figure 5, top row), the KL divergence from the true sum

(Figure 5, middle row), and the scale-optimized KL divergence from the true sum (Figure 5, bottom row).
Here we define the scale-optimized KL divergence as

KLλ[Λ1||Λ2] = minλKL[λΛ1||Λ2] (48)

= 1
2

(
log |Λ1|
|Λ2|

+ d log Tr(Λ−1
1 Λ2)
d

)
, (49)

where d is the dimensionality of the precision matrices Λ1 and Λ2 and we take KL[Λ1,Λ2] = DKL(N (0,Λ−1
1)||N (0,Λ−1

2)).
This is a useful measure since a scaling of the approximate prior does not change the subspaces that are
projected out in the weight projection methods but merely scales the learning rate. By contrast in NCL,
having an appropriate scaling is useful for a consistent Bayesian interpretation.
We find that all the methods yield reasonable correlations and scale-optimized KL divergences between the
true sum of Kronecker products and the approximate sum, although the L2-optimized approximation tends

5

0.94

0.96

0.98
A random RNN

Pe
ar

so
n

co
rre

la
tio

n

0.0

0.7

1.4

KL
 d

iv
er

g.

1 5 10 15
task number

0.06

0.12

0.18

sc
al

e-
op

tii
m

.
KL

 d
iv

er
g.

0.8

0.9

1.0
B SR

0.0

1.4

2.8

1 2 3 4 5 6
task number

0.0

0.3

0.6

naive sum trace bound KL optimized MSE optimized

0.8

0.9

1.0
C smnist

0.0

0.9

1.8

1 5 10 15
task number

0.0

0.7

1.4

Figure 5: Comparison of different Kronecker approximations to consecutive sums of two Kro-
necker products. (A) Comparison of approximations for Fisher matrices computed from random RNNs
with dynamics as described in Section 3.1. (B) As in (A) for the Fisher matrices from the stimulus-response
tasks with 50 hidden units. (C) As in (A) for the Fisher matrices from the SMNIST tasks. Note that the KL
divergence for the MSE-minimizing approximation is not shown in panel 2 as it is an order of magnitude
larger than the alternatives and thus does not fit on the axis.

to have a slightly better correlation and slightly worse scaled KL (Figure 5, red). However, the KL-optimized
Kronecker sum greatly outperforms the other methods as quantified by the regular KL divergence and is the
method used in this work since it is relatively cheap to compute and only needs to be computed once per
task (Figure 5, green).

D KFAC approximation to the Fisher matrix in recurrent neural
networks

Recall from Section 3.1 that the dynamics of the RNN are given by the equations:

ht = Art−1 +Bxt + ξt = Wzt + ξt (50)
rt = φ(ht) (51)
yt ∼ p(yt|Crt) (52)

where zt = (r>t−1,x
>
t)> and W = (A>,B>)>. The nonlinearity φ(h) is applied to the hidden activations h

element-wise. The log-likelihood of observing a sequence of outputs y1, . . . ,yT given inputs x1, . . . ,xT and
ξ1, . . . , ξT is

`(W ,C) =
T∑
t=1

log p(yt|Crt), (53)

where rt is completely determined by the dynamics of the network and the inputs. With a slight abuse of
notation, we use x to denote both ∂`/∂x for vectors x and ∂`/∂vec(X) for matrices X. In this section, it

6

should be clear given the context whether x is representing the gradient of L with respect to a vector or a
vectorized matrix. Using these notations, we can write the gradient of L with respect to vec(W) as :

w =
T∑
t=1

ht
∂ht

∂vec(W) =
T∑
t=1

htz
>
t =

T∑
t=1

zt ⊗ ht (54)

which can be easily derived fom the backpropagation through time (BPTT) algorithm and the definition of a
Kronecker product. Using this expression for w, we can write the FIM of W as:

FW = E{(ξ,x,y)}∼M
[
ww>

]
(55)

= E

(T∑
t=1

zt ⊗ ht

)(
T∑
s=1

zs ⊗ hs

)> (56)

=
T∑
t=1

T∑
s=1

E
[(
ztz
>
s

)
⊗
(
hth

>
s

)]
. (57)

Here the expectations are taken with respect to the model distribution. Unfortunately, computing FW can
be prohibitively expensive. First, the number of computations scales quadratically with the length of the
input sequence T . Second, for networks of dimension n, there are n4 entries in the Fisher matrix which can
therefore be too large to store in memory, let alone perform any useful computations with it. For this reason,
we follow Martens et al. (2018) and make the following three assumptions in order to derive a tractable
Kronecker-factored approximation to the Fisher. The first assumption we make is that the input and recurrent
activty zt is uncorrelated with the adjoint activations ht:

FW ≈
T∑
t=1

T∑
s=1

E
[
ztz
>
s

]
⊗ E{(ξ,x,y)}∼M

[
hth

>
s

]
. (58)

Note that this approximation is exact when the network dynamics are linear (i.e., φ(x) = x). The second
assumption that we make is that both the forward activity zt and adjoint activity ht are temporally
homogeneous. That is, the statistical relationship between zt and zs only depends on the difference τ = s− t,
and similarly for that between ht and hs. Defining Aτ = E

[
zsz
>
s+τ
]
and similarly Gτ = E

[
hsh

>
s+τ

]
, we

have A−τ = A>τ and G−τ = Gτ . Using these expressions, we can further approximate the Fisher as:

FW ≈
T∑

τ=−T
(T − |τ |)Aτ ⊗ Gτ . (59)

The third and final approximation we make is that Aτ ≈ 0 and Gτ ≈ 0 for τ 6= 0. In other words, we assume
the forward activity zt and adjoint activity ht are approximately indendent across time. This gives the final
expression:

FW ≈ E [T] E
[
zz>

]
⊗ E

[
hh
>]

, (60)

where we have also taken an expectation over the sequence length T to account for variable sequence lengths
in the data. Following a similar derivation, we can approximate the Fisher of C as:

FC ≈ E [T] E
[
rr>

]
⊗ E

[
y y>

]
. (61)

The quality of these assumptions and comparisons with the ‘approximate Fisher matrices’ used in OWM and
DOWM are discussed in Appendix E.

E Relation to projection based continual learning

In this section, we further elaborate on the intuition that projection based continual learning methods such as
Orthogonal Weight Modification (OWM; Zeng et al., 2019) may be viewed as variants of NCL with particular

7

W

C

0

2

4

6

ctr Fkf FDOWMFOWM

0

1

2

3

ctr Fkf FDOWMFOWM

Exact Fexact KFAC Fkf DOWM FDOWM OWM FOWM

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

A B

Figure 6: Comparison of projection matrices. In a Bayesian framework, we can formalize what is meant
by directions ‘important for previous tasks’ as those that are strongly constrained by the prior p(θ|D1:k−1).
To see how this compares with OWM and DOWM, we considered the Kronecker-structured precision matrices
Fapprox implied by the projection matrices PR and PL for each method and related them to the exact
Fisher matrix Fexact in a linear recurrent network. (A) Fexact (left) for W as well as the approximations
to Fexact provided by our Kronecker-factored approximation (KFAC; Fkf), DOWM (FDOWM), and OWM
(FOWM). (B) Scale-invariant KL-divergence (Equation 48) between N (µ,F−1

exact) and N (µ,F−1
approx) for each

approximation. Red horizontal line indicates the mean value obtained from Fapprox = RFexactR
> where

R is a random rotation matrix (averaged over 500 random samples). (C–D) Same as (A–B) but for the
parameter C.

approximations to the prior Fisher matrix. These approaches are typically motivated as a way to retrict
parameter changes in a neural network that is learning a new task to subspaces orthogonal to those used in
previous tasks.
For example, to solve the continual learning problem in RNNs as described in Section 3.1, Duncker et al.
(2020) proposed a projected gradient algorithm (DOWM) that restricts modifications to the recurrent/input
weight matrix W on task k + 1 to column and row spaces of W that are not heavily “used” in the first k
tasks. Specifically, they concatenate input and recurrent activity zt across the first k tasks into a matrix
Z1:k. They use Z1:k and WZ1:k as estimates of the row and column spaces of W that are important for the
first k tasks. They proceed to construct the following projection matrices:

P 1:k
z = Z1:k(Z1:kZ

>
1:k + αI)−1Z1:k

> (62)

≈ kα
(
E
[
zz>

]
+ αI

)−1 (63)
P 1:k
wz = WZ1:k(WZ1:kZ

>
1:kW

> + αI)−1(WZ1:k)> (64)

≈ kα
(
WE

[
zz>

]
W> + αI

)−1
, (65)

which are used to derive update rules for W as:

vec(∆W) ∝
(
P 1:k
z ⊗ P 1:k

wz

)
w (66)

∝
(
E
[
zz>

]
+ αI

)−1 ⊗
(
WE

[
zz>

]
W> + αI

)−1
w (67)

where w = vec(∇W `k+1(W ,C)). These projection matrices restrict changes in the row and column space of
W to be orthogonal to Z1:k and WZ1:k respectively. Similar update rules can be defined for C. Zeng et al.
(2019) propose a similar projection based learning rule (OWM) in feedforward networks, which only restricts
changes in the row-space of the weight parameters (i.e., Pwz = I).
We recall that the NCL update rule on task k + 1 is given by

vec(∆W) ∝
(
E
[
zz>

]
+ αI

)−1 ⊗
(
E
[
hh
>]+ αI

)−1
w + (vec(Wk)− vec(W)). (68)

8

W

C

W

C

0

2

4

6

ctr Fkf FdiagFdowmFowm

0

2

4

6

ctr Fkf FdiagFdowmFowm

0

2

4

6

ctr Fkf FdiagFdowmFowm

0

2

4

6

8

ctr Fkf FdiagFdowmFowm

Exact Fexact KFAC Fkf Diag Fdiag DOWM FDOWM OWM FOWM

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

A B

C D

Figure 7: Comparison of Fisher Approximations in a Linear RNN with rotated Gaussian and
categorical likelihoods. (A) Exact and approximations to the Fisher information matrix of the recurrent
and input weight matrixW (left) and the linear readout C (bottom) of a linear recurrent neural network with
Gaussian noise and non-diagonal noise covariance Σ. From the left: exact Fisher information matrix Fexact,
Kronecker-Factored approximation (Fkf; KFAC), Diagonal (Fdiag), DOWM (FDOWM), and OWM (FOWM).
(B) Scale-invariant KL-divergence between N (0,F−1

exact) and N (0,F−1) for F ∈ {Fkf,Fdiag,FDOWM,FOWM}.
(C-D) As in (A-B), now for a categorical noise model p(y|Cr) = Cat (softmax(Cr)).

We see that this NCL update rule looks similar to the OWM and DOWM update steps, and that they share
the same projection matrix in the row-space Pz. The methods proposed by Duncker et al. (2020) and Zeng
et al. (2019) can thus be seen as approximations to NCL with a Kronecker structured Fisher matrix. However,
we also note that OWM and DOWM do not include the regularization term (vec(Wk) − vec(W)). This
implies that while OWM and DOWM encourage parameter updates along flat directions of the prior, the
performance of these methods may deteriorate in the limit of infinite training duration if a local minimum of
task k is not found in a flat subspace of previous tasks (c.f. Figure 1).
To further emphasize the relationship between OWM, DOWM and NCL, we compared the approximations to
the Fisher matrix Fapprox = P−1

R ⊗P−1
L implied by the projection matrices of these methods (Figure 6). Here

we found that OWM and DOWM provided reasonable approximations to the true Fisher matrix with both
Gaussian (Figure 6) and categorical (Figure 7) observation models. This motivates a Bayesian interpretation
of these methods as using an approximate prior precision matrix to project gradients similar to the derivation
of NCL in Appendix A. Here it is also worth noting that while we use an optimal sum of Kronecker factors
to update the prior precision after each task in NCL (Appendix C), OWM and DOWM simply sum their
Kronecker factors. In the case of OWM, this is in fact an exact approximation to the sum of the Kronecker
products since the right Kronecker factor is in this case a constant matrix I. For DOWM, summing the
individual Kronecker factors does not provide an optimal approximation to the sum of the Kronecker products,
but our results in Appendix C suggest that it is a fairly reasonable approximation up to a scale factor which
can be absorbed into the learning rate.

9

F Natural gradient descent and the Fisher Information Matrix

When optimizing a model with stochastic gradient descent, the parameters θ are generally changed in the
direction of steepest gradient of the loss function L:

g = ∇θL. (69)

This gives rise to a learning rule
θi+1 = θi − γg (70)

where γ is a learning rate which is usually set to a small constant or updated according to some learning rate
schedule. However, we note that the parameter change itself has units of [θ]−1 which suggests that such a
naïve optimization procedure might be pathological under some circumstances. Consider instead the more
general definition of the normalized gradient ĝ:

ĝ = limε→0
1

Z(ε)argminδL(θ + δ) d(θ,θ + δ) ≤ ε. (71)

Here, ĝ is the direction in state space which minimizes L given a step of size ε according to some distance
metric d(·, ·). Canonical gradient descent is in this case recovered when d(·, ·) is Euclidean distance in
parameter space

d(θ,θ′) = ||θ − θ′||22. (72)

We now formulate L(θ) as depending on a statistical model p(D|θ) such that L(θ) = L(p(D|θ)). This allows
us to define the direction of steepest gradient in terms of the change in probability distributions

d(θ,θ′) = KL [p(D|θ′)||p(D|θ)] . (73)

It can be shown that the direction of steepest decent for small step sizes is in this case given by (Kunstner
et al., 2019; Amari, 1998)

g ∝ F−1∇L(θ), (74)

where F is the Fisher information matrix

F (θ) = Ep(D|θ)
[
∇ log p(D|θ)∇ log p(D|θ)T

]
. (75)

We thus get an update rule of the form

θi+1 = θi − γF−1∇θL, (76)

which has units of [θ] and corresponds to a step in the direction of parameter space that maximizes the
decrease in L for an infinitesimal change in p(D|θ) as measured using KL divergences. It has been shown in
a large body of previous work that such natural gradient descent leads to improved performance (Bernacchia
et al., 2018; Osawa et al., 2019; Amari, 1998), and the main bottleneck to its implementation is usually the
increased cost of computing F or a suitable approximation to this quantity.
We note that this optimization method is very similar to that derived for NCL in Section 2.2 and Appendix A
except that NCL uses the approximate Fisher for previous tasks instead of the Fisher information matrix of
the current loss. This is important since (i) it mitigates the need for computing a fairly expensive Fisher
matrix at every update step, and (ii) it ensures that parameters are updated in directions that preserve the
performance on previous tasks.

G Task details

Here we provide additional implementation details for the stimulus-response tasks and the SMNIST tasks.

10

Stimulus-response tasks Detailed descriptions of the stimulus-response tasks used in this work can be
found in the appendix of Yang et al. (2019).
Here we provide a brief overview of the six tasks. All tasks are characterized by a stimulus period and a
response period, and some tasks include an additional delay period between the two. The duration of the
stimulus and delay periods are variable across trials and drawn uniformly at random within an allowed
range. During the stimulus period, the input to the network takes the form of x = (cos θin, sin θin) where
θin ∈ [0, 2π] is some stimulus drawn uniformly at random for each trial. An additional tonic input is provided
to the network which indicates the identity of the task using a one-hot encoding. A constant input to a
‘fixation channel’ during the stimulus and delay periods signifies that the network output should be 0 in the
response channels and 1 in a ‘fixation channel’. During the response period, the fixation input is removed and
the output should be 0 in the fixation channel. The target output in the response channels takes the form
y = (cos θout, sin θout) where θout is some target output direction described for each task below:

• task 1 (fdgo) During this task θout = θin and there is no delay period.

• task 2 (fdanti) During this task θout = 2π − θin and there is no delay period.

• task 3 (delaygo) During this task θout = θin and there is a delay period separating the stimulus and
response periods.

• task 4 (delayanti) During this task θout = 2π−θin and there is a delay period separating the stimulus
and response periods.

• task 5 (dm1) During this task, two stimuli are drawn from [0, 2π] with different input magnitudes such
that x = (m1 cos θ1 +m2 cos θ2,m1 sin θ1 +m2 sin θ2). θout is then the element in (θ1, θ2) corresponding
to the largest m.

• task 6 (dm2) As in ‘dm1’, but where the input is now provided through a separate input channel.

The loss for each task is computed as a mean squared error from the target output.

SMNIST For this task set, we use the stroke MNIST dataset created by de Jong (2016). This consists of a
series of digits, each of which is represented as a sequence of vectors {xt ∈ R4}. The first two columns take
values in [−1, 0, 1] and indicate the discretized displacement in the x and y direction at each time step. The
last two columns are used for special ‘end-of-line’ inputs when the virtual pen is lifted from the paper for a
new stroke to start, and an ‘end-of-digit’ input when the digit is finished. See de Jong (2016) for further
details about how the dataset was generated and formatted. In addition to the standard digits 0-9, we include
two additional sets of digits:

• the digits 0-9 where the x and y directions have been swapped (i.e. the first two elements of xt are
swapped),

• the digits 0-9 where the x and y directions have been inverted (i.e. the first two elements of xt are
negated).

Furthermore, we omitted the initial entry of each digit corresponding to the ‘start’ location to increase task
difficulty. We turned this dataset into a continual learning task by constructing five binary classification
tasks for each set of digits: {[2, 3], [4, 5], [1, 7], [8, 9], [0, 6]}. Note that we have swapped the ‘1’ and ‘6’ from a
standard split MNIST task to avoid including the 0 vs 1 classification task which we found to be too easy.
For each trial, a digit was sampled at random from the corresponding dataset, and xt was provided as an
input to the network at each time step corrupted by Gaussian noise with σ = 1. After the ‘end-of-digit’ input,
a response period with a duration of 5 time steps followed. During this response period only, a cross-entropy
loss was applied to the output units y to train the network. During testing, digits were sampled from the
separate test dataset and classification performance was quantified as the fraction of digits for which the
correct class was assigned the highest probability in the last timestep of the response period.

11

H Further results

H.1 Performance with different prior scalings

Here we consider the performance of KFAC and NCL for different values of λ on the stimulus-response task
set with 256 recurrent units. We start by recalling that λ is a parameter that is used to define a modified
Laplace loss function with a rescaling of the prior term (c.f. Section 2.3):

L(λ)
k (θ) = log p(Dk|θ)− λ(θ − µk−1)>Λk−1(θ − µk−1). (77)

In this context, it is worth noting that KFAC and NCL have the same stationary points when they share the
same value of λ. Despite this, the performance of NCL was robust across different values of λ (Figure 8A), while
learning was unstable and performance generally poor for KFAC with small values of λ ∈ [1, 10]. However, as
we increased λ for KFAC, learning stabilized and catastrophic forgetting was mitigated (Figure 8B). A similar
pattern was observed for the stimulus-response task set with 50 units and the SMNIST task set (Section H.3).
We hypothesize that the improved performance of KFAC for high values of λ is due in part to the gradient pre-
conditioner of KFAC becoming increasingly similar to NCL’s preconditioner Λ−1

k−1 as λ increases (Section 2.3).
To test this hypothesis, we modified the Adam optimizer (Kingma and Ba, 2014) to use different values of λ
when computing the Adam momentum and preconditioner. Specifically, we computed the momentum and
preconditioner of some scalar parameter θ as:

m(i) ← β1m
(i−1) + (1− β1)∇θL(λm) (78)

v(i) ← β2v
(i−1) + (1− β2)

(
∇θL(λv)

)2
(79)

where L(λ) is defined in Equation 77 and importantly λm may not be equal to λv. As in vanilla Adam, we
used m and v to update the parameter θ according to the following update equations at the ith iteration:

m̂(i) ← m(i)/(1− βi1) (80)
v̂(i) ← v(i)/(1− βi2) (81)

θ(i) ← θ(i−1) + γm̂(i)/(
√
v̂(i) + ε), (82)

where γ is a learning rate, and β1, β2, and ε are standard parameters of the Adam optimizer (see Kingma
and Ba, 2014 for further details). Using this modified version of Adam, which we call “decoupled Adam”,
we considered two variants of KFAC: (i) “decoupled KFAC”, where we fix λm = 1 and vary λv (Figure 8C),
and (ii) “reverse decoupled”, where we fix λv = 1 and vary λm (Figure 8D). We found that “decoupled
KFAC” performed well for large λv, suggesting that it is sufficient to overcount the prior in the Adam
preconditioner without changing the gradient estimate (Figure 8C). “Reverse decoupled” also partly overcame
the catastrophic forgetting for high λm, but performance was worse than for either NCL, vanilla Adam,
or decoupled Adam (Figure 8D). These results support our hypothesis that the increased performance of
KFAC for high λ is due in part to the changes in the gradient preconditioner. To further highlight how the
preconditioning in Adam relates to the trust region optimization employed by NCL, we computed the scaled
KL divergence between the Adam preconditioner and the diagonal of the Kronecker-factored prior precision
matrix Λk−1 at the end of training on task k. We found that the Adam preconditioner increasingly resembled
Λk−1, the preconditioner used by NCL, as λ increased (Figure 9).
In summary, our results suggest that preconditioning with Λk−1 in NCL may mitigate the need to overcount
the prior when using weight regularization for continual learning. Additionally, such preconditioning to
encourage parameter updates that retain good performance on previous tasks also appears to be a major
contributing factor to the success of weight regularization with a high value of λ when using Adam for
optimization.

12

10 2

10 1

100

NC
L

(o
ur

s)

A = 1
task 1 task 2 task 3 task 4 task 5 task 6 mean

= 10 = 102 = 103 = 104

10 2

10 1

100

KF
AC

B

10 2

10 1

100

de
co

up
le

d
KF

AC

C

0 100 200
iteration (x1000)

10 2

10 1

100

re
ve

rs
e

de
co

up
le

d D

0 100 200
iteration (x1000)

0 100 200
iteration (x1000)

0 100 200
iteration (x1000)

0 100 200
iteration (x1000)

Figure 8: Continual learning on SR tasks for different λ . (A) Evolution of the loss during training
for each of the six stimulus-response tasks for NCL with different values of λ. The performance of NCL is
generally robust across different choices of λ until it starts overfitting too heavily on early tasks. (B) As
in (A), now for KFAC with Adam which performs poorly for small λ. (C) As in (B), now with ‘decoupled
Adam’ where λ = 1 is used for the gradient term and different values of λ are used for the preconditioner.
Interestingly, this is sufficient to overcome the catastrophic forgetting observed for KFAC with λ = 1. The
transient forgetting observed at the beginning of a new task is likely due to the time it takes to gradually
update the preconditioner for the new task as more data is observed. (D) As in (B), now with ‘reverse
decoupled Adam’ where λ = 1 is used for the preconditioner and different values of λ are used for the gradient
term. For higher values of λ, this performs worse than both KFAC and decoupled KFAC.

H.2 Performance with low capacity networks

In this section, we provide further details of the comparisons between different continual learning methods
on the stimulus-response tasks analyzed in Section 3.2, now for smaller networks with 50 recurrent units.
Here we found that NCL outperformed both the alternative projection based methods and KFAC with Adam
(Figure 10). Results in Figure 10 are reported for networks with optimized hyperparameters for the projection
based methods (Section H.3). In particular, we note that the value of α used when inverting the approximate
Fisher matrix is quite large for DOWM which reduces the difference in learning rates between directions that
are estimated to be important for previous tasks and those that are unimportant (note that the gradient
preconditioners are approximately proportional to the identity matrix for large α). When instead using a
small value of α simply for numerical stability, DOWM greatly overfits on the first task and largely fails to
learn subsequent tasks.

13

100 101 102 103 104 105

λ

0

5

10

W

sc
al

e-
in

va
ri

an
t

K
L

100 101 102 103 104 105

λ

C

Figure 9: Similarity of the Adam preconditioner and diagonal Fisher matrix. Scale-invariant KL
divergence (Equation 48) between the diagonal of Λk−1 and the preconditioner used by Adam (

√
v; Kingma

and Ba, 2014) at the end of training on task k. Results are averaged over the five first stimulus-response
tasks, and the figure indicates mean and standard error across 5 seeds for the state matrix W (left) and the
output matrix C (right).

0 100 200
iteration (x1000)

10 2

10 1

100

lo
ss

A NCL (ours)
task 1 task 2 task 3 task 4 task 5 task 6 mean

0 100 200
iteration (x1000)

B DOWM

0 100 200
iteration (x1000)

C OWM

0 100 200
iteration (x1000)

D KFAC

Figure 10: Continual learning on stimulus-response tasks with a 50-unit RNN. Evolution of the
loss during training for each of the six stimulus-response tasks for NCL (A), DOWM (B), OWM (C), and
KFAC with λ = 1 (D). Solid black lines indicate the mean loss over all tasks at the end of training.

H.3 Hyperparameter optimizations

Here we provide the results of our hyperparameter optimizations for each task set. Note that we optimized
over the parameter α used to invert the approximate Fisher matrices in the projection based methods (NCL,
OWM and DOWM), and that we optimized over the parameter λ used to scale the importance of the prior
for weight regularization with KFAC.
For KFAC, we found that the performance was very sensitive to the value of λ across all tasks sets, and
in particular that λ = 1 performed poorly. In the projection based methods, α can be seen as evening
out the learnings rates between directions that are otherwise constrained by the projection matrices, and
indeed standard gradient descent is recovered as α→∞ (on the Laplace objective for NCL and on `k for
OWM/DOWM). We found that NCL in general outperformed the other projection based methods with less
sensitivity to the regularization parameter α. DOWM was particularly sensitive to α and required a relatively
high value of this parameter to make up for its projection into too small a subspace (Appendix E). Here it is
also worth noting that there is an extensive literature on how a parameter equivalent to α can be dynamically
adjusted when doing standard natural gradient descent using the Fisher matrix for the current loss (see
Martens, 2014 for an overview). While this has not been explored in the context of projection-based continual
learning, it will be interesting to combine NCL with methods such as Tikhonov dampening (Tikhonov, 1943)
in future work to automatically adjust α and make NCL a hyperparameter-free method.
We generally report results in the main text and appendix using the optimal hyperparameter settings for each

14

10 5 10 3 10 1

10 1

100
lo

ss
ryang (256)

10 5 10 3 10 1
10 1

100
ryang (50)

10 5 10 3 10 1
100

101
smnist (30)

101 103 105

10 1

100

lo
ss

101 103 105

10 1

100

NCL DOWM OWM KFAC

101 103 105
100

2 × 100
3 × 1004 × 100

Figure 11: Hyperparameter optimization. (A) Comparison of the average loss across tasks on the
stimulus-response task set with a 256-unit RNN as a function of α for the projection based methods (top
panel) and as a fuction of λ for KFAC (bottom panel). Circles and error bars indicate mean and s.e.m. across
5 random seeds. Horizontal lines indicate the optimal value for each method. (B) As in (A), now for the
stimulus-response task set with 50 units. (C) As in (A), now for the SMNIST task set.

method unless otherwise noted. However, α = 10−5 was used for both NCL and Laplace-DOWM in Figure 3C
to compare the qualitative behavior of the two different Fisher approximations without the confound of a
large learning rate in directions otherwise deemed “important” by the approximation.

H.4 SMNIST dynamics with DOWM

In this section, we investigate the latent dynamics of a network trained by DOWM with α = 0.001 (c.f. the
analysis in Section 3.4 for NCL). Here we found that the task-associated recurrent dynamics for a given
task were more stable after learning the corresponding task than in networks trained with NCL. Indeed,
the DOWM networks exhibited near-zero drift for early tasks even after learning all 15 tasks (Figure 12).
However, DOWM also learned representations that were less well-separated after the first 1-2 classification
tasks (Figure 12, bottom) than those learned by NCL. This is consistent with our results in Section 3.3 where
DOWM exhibited high performance on the first task even after learning all 15 tasks, but performed less
well on later tasks (Figure 12). These results may be explained by the observation that DOWM tends to
overestimate the number of dimensions that are important for learned tasks (Section 3.3) and thus projects
out too many dimensions in the parameter updates when learning new tasks.
In the context of biological networks, it is unlikely that the brain remembers previous tasks in a way that
causes it to lose the capacity to learn new tasks. However, it is also not clear how the balance between
capacity and task complexity plays out in the mammalian brain which on the one hand has many orders of
magnitude more neurons than the networks analyzed here, but on the other hand also learns more behaviors
that are more complex than the problems studied in this work. In networks where capacity is not a concern,
it may in fact be desirable to employ a strategy similar to that of DOWM — projecting out more dimensions
in the parameter updates than is strictly necessary — so as to avoid forgetting in the face of the inevitable
noise and turnover of e.g. synapses and cells in biological systems.

15

4
vs

 5
1

vs
 7

r2 = 0.4

k = 1

r2 = 1.0

k = 2

r2 = 1.0

k = 3

r2 = 1.0

k = 6

r2 = 1.0

k = 10

r2 = 1.0

k = 15

r2 = 0.1 r2 = 0.11 r2 = 1.0 r2 = 1.0 r2 = 1.0 r2 = 1.0

task 4/5
learned

task 1/7
learned

Figure 12: Latent dynamics during SMNIST. We considered two example tasks, 4 vs 5 (top) and 1 vs
7 (bottom). For each task, we simulated the response of a network trained by DOWM to 100 digits drawn
from that task distribution at different times during learning. We then fitted a factor analysis model for each
example task to the response of the network right after the correponding task had been learned (squares;
k = 2 and k = 3 respectively). We used this model to project the responses at different times during learning
into a common latent space for each example task. For both example tasks, the network initially exhibited
variable dynamics with no clear separation of inputs and subsequently acquired stable dynamics after learning
to solve the task. The r2 values above each plot indicate the similarity of neural population activity with
that collected immediately after learning the corresponding task, quantified across all neurons (not just the
2D projection).

I NCL for variational continual learning

Online variational inference In variational continual learning (Nguyen et al., 2017), the posterior
p(θ|Dk,φk−1) is approximated with a Gaussian variational distribution q(θk|φk) = N (θk;µ,Σk), where
φk = (µk,Σk). We then treat µk and Σk as variational parameters and minimize the KL-divergence between
q(θk|φk) and the approximate posterior p(θ|Dk,φk) ∝ q(θ|µk−1,Σk−1)p(Dk|θ):

KL
(
q(θ|µk,Σk)|| 1

Zk
q(θ|µk−1,Σk−1)p(Dk|θ)

)
(83)

with respect to µk and Σk. This is equivalent to maximizing the evidence lower-bound (ELBO):

L(µk,Σk) = Eq(θ|µk,Σk) [log p(Dk|θ)]−KL (q(θ|µk,Σk)||q(θ|µk−1,Σk−1)) , (84)

to the data log likelihood

log p(Dk|φk−1) = log
∫
p(Dk|θ)q(θ|φk−1)dθ ≥ L (85)

with q(θ|φk−1) as the ‘prior’ for task k.
Maximizing L requires the computation of both the first likelihood term and the second KL term in
Equation 84. While the second term can be computed analytically, the first term is intractable for general
likelihoods p(Dk|θ). To address this, Nguyen et al. (2017) estimate this likelihood term using Monte Carlo
sampling:

Eq(θ|φk) [log p(Dk|θ)] ≈ 1
K

∑
i

log p(Dk|θi), (86)

where {θi}Mi=1 ∼ q(θ|φk) are drawn from the variational posterior via the reparameterization trick. This
allows direct optimization of the variational parameters µk and Σk. To make the method scale to large

16

models with potentially millions of parameters, Nguyen et al. (2017) also make a mean-field approximation
to the posterior

q(θ|φk) = N (θ;µk,diag(σk)). (87)

Natural variational continual learning We now propose an alternative approach to maximizing L with
respect to φk = (µk,Λk) within the NCL framework, where Λk = Σ−1

k is the precision matrix of q at step k.
We again solve a trust-region subproblem to find the optimal parameter updates for µk and Λk:

∆µk
,∆Λk

= arg min
∆µk

,∆Λk

L(µk,Λk) +∇µk
L>∆µk

+∇Λk
L>∆Λk

(88)

such that C(∆µk
,∆Λk

) ≤ r2, (89)

where
C(∆µk

,∆Λk
) = 1

2∆>µk
Λk−1∆µk

+ 1
4vec(∆Λk

)>(Λ−1
k ⊗Λ−1

k)vec(∆Λk
). (90)

The solution to this optimization problem is given by:

∆µk
= Λ−1

k−1∇µk
L (91)

∆Λk
= 2Λk∇Λk

LΛk. (92)

To compute ∇µk
L and ∇ΛkL, we make use of the following identities (Opper and Archambeau, 2009):

∇µ Eθ∼N (θ;µ,Σ) [f(θ)] = Eθ∼N (θ;µ,Σ) [∇θf(θ)] (93)

∇Σ Eθ∼N (θ;µ,Σ) [f(θ)] = 1
2Eθ∼N (θ;µ,Σ)

[
∇2
θf(θ)

]
. (94)

Applying these identities to compute the gradients of L (Equation 84), we find

∇µk
L = Eθ∼q(θ|φk) [∇θ log p(Dk|θ)−Λk−1(θk − µk−1)] (95)

∇Σk
L = 1

2Eθ∼q(θ|φk)
[
∇2
θ log p(Dk|θ)−Λk−1 + Λk

]
. (96)

Using the fact that dΛk = −Λ−1
k dΣkΛ

−1
k , we have

∇Λk
L = −Λ−1

k ∇Σk
LΛ−1

k (97)

= −1
2Λ−1

k Eθ∼q(θ|φk)
[
∇2
θ log p(Dk|θ)−Λk−1 + Λk

]
Λ−1
k . (98)

This suggests that we can compute ∆µk
and ∆Λk

as:

∆µk
= Λ−1

k−1Eθ∼q(θ|φk) [∇θ log p(Dk|θk)]− (µk − µk−1) (99)
∆Λk

= Λk−1 −Λk − Eθ∼q(θ|φk)
[
∇2
θ log p(Dk|θ)

]
. (100)

This gives the following update rule at learning iteration i during task k:

µ
(i+1)
k = (1− β)µ(i)

k + β
[
µk−1 + Λ−1

k−1Eθ∼q(θ|φ(i)
k

) [∇θ log p(Dk|θ)]
]

(101)

Λ
(i+1)
k = (1− β)Λ(i)

k + β
[
Λk−1 − E

θ∼q(θ|φ(i)
k

)

[
∇2
θ log p(Dk|θ)

]]
, (102)

Note that this update rule is equivalent to preconditioning the gradients ∇µk
L and ∇Λk

L with Λ−1
k−1 and

Λk ⊗Λk respectively.
As for the online Laplace approximation (Section 2.1), one of the main difficulties of implementing the update
rule described in Equation 101 and Equation 102 is that it is impractical to compute and store the Hessian
of the negative log-likelihood for large models. Furthermore, we need Λ−1

k to remain PSD which is not

17

0 100 200
iteration (x1000)

10 2

10 1

100

lo
ss

Variational NCL

task 1
task 2

task 3
task 4

task 5
task 6

Figure 13: Variational NCL applied to the stimulus-response task. Evolution of the loss during
training for each of the six stimulus-response tasks using variational NCL.

guaranteed as the Hessian is not necessarily PSD. In practice we therefore again approximate the Hessian
with the Fisher-information matrix:

Hk = −E
[
∇2
θ log p(θ)

]
≈ Fk = ED̂k∼p(Dk|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)>

]
. (103)

As in Section 2.2 we use a Kronecker factored approximation to the FIM for computational tractability. With
these approximations, we arrive at the learning rule:

µ
(i+1)
k = (1− β)µ(i)

k + β
[
µk−1 + Λ−1

k−1Eθ∼q(θ|φ(i)
k

) [∇θ log p(Dk|θ)]
]
, (104)

Λ
(i+1)
k = (1− β)Λ(i)

k + β
[
Λk−1 + E

θ∼q(θ|φ(i)
k

) [Fk(θ)]
]
. (105)

These update rules define the ‘natural variational continual learning’ (NVCL) algorithm which is the variational
equivalent of the Laplace algorithm derived in Section 2.2 and used in Section 3.

Experiments To understand how Equations 104-105 encourage continual learning, we note that the first
two terms of Equation 104 urge the new parameters µk to stay close to µk−1. The third term of Equation 104
improves the average performance of the learner on task k by moving µk along Λ−1

k−1p(Dk|θ). This is a valid
search direction because Λ−1

k−1 = Σk is the covariance of q(θ|φk−1) and is thus positive semi-definite (PSD).
Importantly, the preconditioner Λ−1

k−1 ensures that µk changes primarily along “flat” directions of q(θ|φk−1).
This in turn encourages q(θ|φk) to stay close to q(θ|φk−1) in the KL sense. In Equation 105, the first two
terms again encourage Λk to remain close to Λk−1. The third term in Equation 105 updates the precision
matrix of the approximate posterior with the average Fisher matrix for task k. This encourages the curvature
of the approximate posterior to be similar to that of the loss landscape of task k, and thus (at least locally)
parameters that have similar performance on the task will have similar probabilities under the approximate
posterior.
To test the natural VCL algorithm, we applied it to the stimulus-response task set considered in Section 3.2
using an RNN with 256 units. Similar to the Laplace version of NCL, we found that NVCL was capable of
solving all six tasks without forgetting (Figure 13). While this can be seen as a proof-of-principle that our
natural VCL algorithm works, we leave more extensive comparisons between the variational and Laplace
algorithms for future work.

Related work Previous studies have proposed the use of variants of natural gradient descent to optimize
the variational continual learning objective (Tseran et al., 2018; Osawa et al., 2019). The key differences
between the method proposed in this section and previous methods are two-fold: (i) we precondition the

18

gradient updates on task k with Λ−1
k−1 as opposed to Λ−1

k as is done in prior work, and (ii) we estimate the
Fisher matrix on each task by drawing samples from the model distribution as opposed to the empirical
distribution as is the case in Tseran et al. (2018); Osawa et al. (2019). It has previously been argued that
drawing from the model distribution instead of using the ‘empirical’ Fisher matrix is important to retain the
desirable properties of natural gradient descent (Kunstner et al., 2019).

J Details of toy example in schematic

In Figure 1A, we consider two regression tasks with losses defined as:

`1(θ) = 1
2(θ − θ1)TQ1(θ − θ1) (106)

`2(θ) = 1
2(θ − θ2)TQ2(θ − θ2), (107)

where θ1 = (3,−6)>, θ2 = (3, 6)>,

Q1 = R(φ1)
[
1 0
0 ζ

]
R(φ1)T , (108)

Q2 = R(φ2)
[
2 0
0 ζ

]
R(φ2)T , (109)

R(φ) =
[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
, (110)

and ζ = 5.5. We train on task 1 first and find the optimal θ = θ1. We then construct a Laplace approximation
to the posterior after learning task 1 to find the posterior precision Q1 (which is in this case exact since the
loss is quadratic in θ). Now we proceed to train on task 2 by maximizing the posterior (see Equation 4):

L2(θ) = `2(θ) + 1
2(θ − θ1)TQ1(θ − θ1) (111)

= `2(θ) + `1(θ) (112)

The gradient of L2(θ) with respect to θ is given by:

∇θL = Q1(θ − θ1) +Q2(θ − θ2). (113)

We can optimize `(θ) using the following four methods:

Laplace: ∆θ ∝ Q1(θ − θ1) +Q2(θ − θ2) (114)
NCL: ∆θ ∝ (θ − θ1) +Q−1

1 Q2(θ − θ2) (115)
GD: ∆θ ∝ Q2(θ − θ2) (116)

Projected: ∆θ ∝ Q−1
1 Q2(θ − θ2), (117)

where γ is the learning rate and Q1 +Q2 is the Hessian of L(w). Note that in ‘GD’ and ‘projected’ we
optimize on task 2 only rather than on the Laplace posterior.
In Figure 1B, we consider a slight modification to `2 such that the loss is no longer convex:

`2(w) = 1
2(θ − θ2)TQ2(θ − θ2) + a− a exp

(
−1

2(θ − v)TQv(θ − v)
)
, (118)

where we have added a Gaussian with covariance Qv to the second loss. The NCL preconditioner from task
1 remains unchanged (Q−1

1) since `1 is unchanged. Denoting G := a exp
(
− 1

2 (θ − v)TQv(θ − v)
)
, we thus

19

0
1
2

1

convex lossA
Laplace Projected NCL (ours)

0
3
6

non-convex lossB

0
20
40

2
0

20
40

0 50 100 150
iteration

0
20
40

1
+

2

0 50 100 150
iteration

0
20
40

Figure 14: Losses on toy optimization problem. (A) Loss as a function of optimization step on task
1 (top), task 2 (middle) and the combined loss (bottom) on the convex toy continual learning problem for
different optimization methods. (B) As in (A), now for the non-convex problem.

have the following updates when learning task 2:

Laplace: ∆θ ∝ Q1(θ − θ1) +Q2(θ − θ2) +Qv(θ − v)G (119)
NCL: ∆θ ∝ (θ − θ1) +Q−1

1 Q2(θ − θ2) +Q−1
1 Qv(θ − v)G (120)

GD: ∆θ ∝ Q2(θ − θ2) +Qv(θ − v)G (121)
Projected: ∆θ ∝ Q−1

1 Q2(θ − θ2) +Q−1
1 Qv(θ − v)G. (122)

In this non-convex case, the different methods can converge to different local minima (c.f. Figure 1B).
The losses on both tasks as well as the combined loss as a function of optimization step are illustrated in
Figure 14 for the convex and non-convex settings.

References
Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation, 10(2):251–276.

Bernacchia, A., Lengyel, M., and Hennequin, G. (2018). Exact natural gradient in deep linear networks and
its application to the nonlinear case. Advances in Neural Information Processing Systems, 31:5941–5950.

de Jong, E. D. (2016). Incremental sequence learning. arXiv preprint arXiv:1611.03068.

Duncker, L., Driscoll, L., Shenoy, K. V., Sahani, M., and Sussillo, D. (2020). Organizing recurrent network
dynamics by task-computation to enable continual learning. Advances in Neural Information Processing
Systems, 33.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kunstner, F., Balles, L., and Hennig, P. (2019). Limitations of the empirical fisher approximation for natural
gradient descent. arXiv preprint arXiv:1905.12558.

Martens, J. (2014). New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193.

Martens, J., Ba, J., and Johnson, M. (2018). Kronecker-factored curvature approximations for recurrent
neural networks. In International Conference on Learning Representations.

20

Martens, J. and Grosse, R. (2015). Optimizing neural networks with kronecker-factored approximate curvature.
In ICML, pages 2408–2417.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational continual learning. arXiv preprint
arXiv:1710.10628.

Opper, M. and Archambeau, C. (2009). The variational gaussian approximation revisited. Neural computation,
21(3):786–792.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan, M. E. (2019).
Practical deep learning with bayesian principles. arXiv preprint arXiv:1906.02506.

Tikhonov, A. N. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39, pages
195–198.

Tseran, H., Khan, M. E., Harada, T., and Bui, T. D. (2018). Natural variational continual learning. In
Continual Learning Workshop@ NeurIPS, volume 2.

Van Loan, C. F. and Pitsianis, N. (1993). Approximation with kronecker products. In Linear algebra for
large scale and real-time applications, pages 293–314. Springer.

Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of context-dependent processing in neural
networks. Nature Machine Intelligence, 1(8):364–372.

21

	1 Introduction
	2 Method
	2.1 Bayesian continual learning
	2.2 Natural continual learning
	2.3 Related work

	3 Experiments and results
	3.1 NCL in recurrent neural networks
	3.2 Stimulus-response tasks
	3.3 Stroke MNIST
	3.4 Dissecting the dynamics of networks trained on the SMNIST task set

	4 Discussion
	A Derivation of the NCL learning rule
	B Implementation
	C Kronecker-factored approximation to the sums of Kronecker Products
	D KFAC approximation to the Fisher matrix in recurrent neural networks
	E Relation to projection based continual learning
	F Natural gradient descent and the Fisher Information Matrix
	G Task details
	H Further results
	H.1 Performance with different prior scalings
	H.2 Performance with low capacity networks
	H.3 Hyperparameter optimizations
	H.4 SMNIST dynamics with DOWM

	I NCL for variational continual learning
	J Details of toy example in schematic

