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Abstract 

How an established behavior is retained and consistently produced by a nervous system in constant flux 
remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity 
patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time 
provided that the population dynamics are constrained to produce the same behavior. To arbitrate 
between these possibilities, we recorded single unit activity in motor cortex and striatum continuously for 
several weeks as rats performed stereotyped motor behaviors – both learned and innate. We found long-
term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural 
activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant 
aspects of the behavior. These results suggest that long-term stable behaviors are generated by single 
neuron activity patterns that are themselves highly stable.  

Introduction 

Learning and memory in dynamic motor circuits 

When we wake up in the morning, we usually brush our teeth. Some of us then cycle to work, where we 
log on to the computer by typing our password. After work, we might go for a game of tennis, gracefully 
hitting the serve in one fluid motion. These motor skills, and many others, are acquired through repeated 
practice and stored in our brains, where they are stably maintained and can be recalled and reliably 
executed even after months of no practice1–3. The neural circuits underlying such motor skills have been 
the subject of extensive study4–6, yet little is known about how these skills persist over time. Given the 
stability of the behaviors themselves7, a possible solution is to dedicate a neural circuit to a given skill or 
behavior and then leave it unchanged. However, even adult brains exhibit continual circuit remodeling, 
including synaptic turnover8–11. This can lead to changes in neural activity patterns over time, both in the 
presence and absence of explicit learning12–16. While neural circuits in constant flux may facilitate learning 
of new behaviors and associations17, it seems antithetical to the stable storage of previously acquired 
behaviors. 

Competing theories and predictions 

Two main theories have been put forth to explain the apparent contradiction of stable memories in plastic 
circuits. In the commonly held view that motor control is governed by low-dimensional dynamics18–20, the 
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paradox can be resolved by having a ‘degenerate subspace’, in which neural activity can change without 
affecting behavior21 or task performance22. While this would do away with the requirement for stable 
activity at the level of single neurons (Figure 1A)12, it requires any drift in population activity to occur 
exclusively in the degenerate subspace. Whether and how biological circuits can ensure this without 
continual practice is not known17. 

A different way to maintain stable motor output is by constraining the changes in neural circuits such that 
they do not affect single neuron activity associated with already established behaviors22–24. In this case, 
the activity patterns of individual neurons locked to the behavior would remain constant or highly similar 
over time (Figure 1A)12. This solution has been observed in the specialized zebra finch song circuit, where 
neural activity patterns associated with a stereotyped song remain stable for months25. However, zebra 
finches have a neural circuit dedicated exclusively to learning and generating their one song, with 
plasticity largely restricted to a ‘critical period’ of development26. In contrast, humans and other mammals 
use the same ‘general’ motor network for a wide range of behaviors – both learned and innate. Whether 
a similar mechanism could underlie the stability of motor memories in such generalist circuits has yet to 
be determined. 

Experimental challenges 

Arbitrating between the hypotheses outlined above has been attempted by recording neural activity over 
time during the performance of well-specified behaviors, either by means of electrophysiology21,27–31 or 
calcium imaging13,25,32. These studies have come to discrepant conclusions, with some suggesting stable 
single neuron activity25,28,29,31,33, and others reporting changing activity for fixed behaviors21,27,32. It remains 
unclear whether these discrepancies reflect technical differences in recordings and analyses, or whether 
they reflect biological differences between behaviors, animals, or circuits. Importantly, putative drift in 
neural activity could be caused by factors not directly related to the mapping between neural activity and 
motor output. These include unstable environmental conditions or fluctuations in the animal’s internal 
state that can affect attention, satiety, and motivation34–36. Notably, many of these processes, driven by 
constrained or cyclic fluctuations in hormones or neuromodulators35,37, drift around a stable mean. As 
such, they can be distinguished from drift in neural circuits by recording for durations longer than the 
autocorrelation time of the various uncontrolled, or ‘latent’, processes. 

However, high-quality long-term recordings of the same neurons can be technically challenging. In lieu of 
this, a recent approach has considered the stability of low-dimensional latent neural dynamics over 
extended time periods38. While this work suggests that latent motor cortical dynamics underlying stable 
motor behaviors are stable over time, it does not address the source of this stability. In particular, it 
remains unclear whether such long-term stable latent dynamics result from drifting single neuron activity 
within a degenerate subspace that produces the same latent trajectories, or whether it is a consequence 
of neural activity patterns that are stable at the level of single neurons. 

In this work, we first use a recurrent neural network to demonstrate how long-term single unit recordings 
during a stably executed behavior can distinguish between the two main models of how stable behaviors 
are maintained. We then perform recordings in rats producing stable behaviors, targeting two central 
nodes of the motor system: motor cortex (MC) and dorsolateral striatum (DLS)39. To probe the degree to 
which our findings generalize across different classes of behaviors, we examine both learned (Figure 1B) 
and innate behaviors. Additionally, we record the animals’ behavior at high spatiotemporal resolution to 
account for any changes in task-related motor output (Figure 1C)28,40. Our combined neural and behavioral 
recordings revealed that neural circuit dynamics are highly stable at the level of single neurons. The small 
amount of drift in task-related neural activity could be accounted for by a concomitant slow drift in the 
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behavior over time. These results suggest that stable behaviors are stored and generated by stable single 
neuron activity. 

 

Figure 1: A paradigm for interrogating long-term neural and behavioral stability. (A) Schematic illustrating stable 
and drifting neural activity. To have a stable motor output over time (left), the underlying task-related neural activity 
can either remain stable or change along a behavioral ‘null direction’ (right)41. If single neuron activity is stable over 
time, similarity of the firing patterns associated with two trials of a stable behavior should not depend on the time 
separating the trials (green). This can be achieved through stable connectivity (RNN insets). Conversely, if the single 
neuron activity patterns driving the behavior change over time, the similarity of task-associated neural activity will 
decrease with increasing time difference (purple)12. (B) Schematic illustration of the task used to train complex 
stereotyped and stable movement patterns in rats6. To receive a reward, rats must press a lever twice separated by 
an interval of 700 ms. (C) Mean task-related forelimb trajectory for an example rat trained on the task in (B) across 
three different days, each two weeks apart. Y-axis indicates horizontal forelimb position (parallel to the ground). 

Results 

Network models of stable and unstable motor circuits 

When analyzing the stability of task-associated neural activity, it is important to consider stability not only 
at the population level (e.g. in the form of stable latent dynamics), but also at the level of task-associated 
single neurons. To highlight this distinction and motivate the use of longitudinal single unit recordings to 
address the neural mechanisms of long-term behavioral stability, we first simulated a degenerate control 
network. Specifically, we trained a recurrent neural network (RNN) using gradient descent42 to generate 
control signals for five virtual actuators, each with its own defined target output (Figure 2A; Methods). 
After training, we simulated the noisy dynamics of the circuit for 100 trials (Methods) and generated 
spikes from a Poisson observation model to constitute a simulated experimental ‘session’ (Figure 2B, 2C). 

Due to the degeneracy of the circuit (250 units with 60,000 synaptic weights controlling a 5-dimensional 
time-varying output), multiple distinct networks with different single unit activity patterns can achieve 
the same target output. This allowed us to compare network dynamics of RNNs producing the same 
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output with either identical or differing connectivity across separate simulated ‘sessions’. To intuit how 
activity patterns change over time in an unstable network, we performed a linear interpolation between 
the parameters of two independently trained RNNs and finetuned the networks to ensure robust 
performance (Methods). This yielded 7 RNNs with increasingly dissimilar connectivity producing the same 
output – a phenomenological model of neural drift, where the position of a network within this 
interpolation series can be used as a proxy for time (Extended Data Figure 1). We proceeded to investigate 
the degree to which single unit activity changed as a function of this measure of time. We found that the 
firing patterns of individual units in the RNNs tended to change from session to session, with sessions 
close in time exhibiting more similar firing patterns (Figure 2D). To quantify this, we computed the 
correlation between single unit PETHs for all pairs of sessions, averaged across units. This PETH correlation 
systematically decreased as a function of time difference between sessions, despite a stable network 
output (Figure 2E). In contrast, a negative control, where network parameters fluctuated around a single 
local minimum, yielded stable single unit activity (Figure 2E; Methods). 

 

Figure 2: Analyzing neural stability in a recurrent network model. (A) The network was trained to produce a fixed 
target output for each of its five actuators. Lines and shadings indicate mean and standard deviation of the output 
from three example actuators over 100 simulated trials after training. (B) Activity of three example units from the 
recurrent network after training (Methods), visualized as raster plots of spike times (left) and peri-event time 
histograms (PETHs; right) across 100 simulated trials. (C) PETHs for all units firing at least 100 spikes, sorted according 
to the PETH peak from a set of held-out trials and plotted as a heatmap with color indicating spike count from low 
(blue) to high (red). (D) Example raster plots as in (B) across 7 different sessions (y-axis) for a network exhibiting 
either stable (left) or drifting (right) single unit activity. (E) Quantification of the similarity in the space of network 
output (left), PETHs (middle), and aligned latent trajectories (right) as a function of time difference (change in y value 
from (D)) for the stable RNN (green) and the drifting RNN (purple). Lines and shadings indicate mean and standard 
deviation across 10 networks. 
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We then considered how such single unit analyses differ from approaches that assess the stability of low-
dimensional latent dynamics38. Following Gallego et al.38, we computed the principal components of 
neural activity for each session and aligned the resulting latent dynamics by applying canonical correlation 
analysis (CCA) to each pair of simulated sessions (Methods). We then computed the neural similarity as a 
function of time difference, measuring similarity as the correlation between aligned latent trajectories. As 
expected for networks with constant output, the latent dynamics remained similar over time for both the 
network with constant and the one with drifting single unit activity (Figure 2E). This simulation illustrates 
how the stable latent dynamics reported in previous work38 can be driven by either stable or drifting single 
neuron activity patterns43, and hence motivates long-term recordings of single neurons as a means to 
study the neural circuit mechanisms underlying long-term stable behaviors. 

Long-term recordings during a learned motor task  

To investigate the stability of biological motor circuits experimentally, we trained rats (n = 6) to perform 
a timed lever-pressing task in which they received a water reward for pressing a lever twice with an inter-
press interval of 700 ms. Rats learned to solve the task by developing complex stereotyped movement 
patterns (Figure 3A, Extended Data Figure 2A)6,44. Since the task is kinematically unconstrained (meaning 
it has many ‘motor solutions’) and acquired through trial-and-error, each animal converged on its own 
idiosyncratic solution (Figure 3B). However, once acquired, the individually distinct behaviors persisted 
over long periods of time (Figure 3A).  

To reduce day-to-day fluctuations in environmental conditions that could confound our assessment of 
neural stability, animals were trained in a fully automated home-cage training system with a highly 
regimented training protocol in a stable and well-controlled environment45. After reaching expert 
performance, animals were implanted with tetrode drives for neural recordings46 targeting Layer 5 of 
motor cortex (MC, n = 3) or dorsolateral striatum (DLS, n = 3)39 (Methods). While the stability of single 
units in cortical regions has previously been addressed with inconsistent findings12,21,28,33,46, studies of 
neural stability in sub-cortical regions, and specifically the striatum, are scarce47,48. DLS is, in this case, 
particularly relevant as it is essential for the acquisition and control of the motor skills we study44. 

Following recovery from surgery, animals were returned to their home-cage training boxes and resumed 
the task. Neural activity was recorded continuously over the course of the months-long experiments46. 
Importantly, our semi-automated and previously benchmarked spike-sorting routine46 allowed us to track 
the activity of the same neurons over days to weeks in both DLS and MC (Figure 3C, 3D). The task-relevant 
movements of all animals were tracked at high resolution49,50, and both behavior and neural activity were 
aligned to the two lever-presses to account for minor variations in the inter-press interval (Methods). 
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Figure 3: Experimental recordings of behavior and neural activity. (A) Left forelimb trajectories in the horizontal 
and vertical dimension (c.f. Figure 1B) for an example expert rat (see Extended Data Figure 2A for data from the 
other 5 animals). Color indicates forelimb position. Kinematics were linearly time-warped to align the two lever-
presses for all analyses (Methods; warping coefficient = 1.00 ± 0.07); black triangles indicate the times of the lever 
presses. The rat uses the same motor sequence to solve the task over many days with only minor variations. (B) 
Mean trajectories across all trials of the left (top row; left side view) and right (bottom row; right side view) forelimbs 
for each rat (columns), illustrating the idiosyncratic movement patterns learned by different animals to solve the 
task. Circles indicate movement initiation; dark and light grey crosses indicate the times of the 1st and 2nd lever press 
respectively. (C) Time of recording for each unit for two example rats with recordings from DLS (left) and MC (right). 
Units are sorted according to the time of first recording. (D) Distribution of recording times pooled across units from 
all animals recording from DLS (left) or MC (right). Numbers above bars indicate the number of neurons in each bin. 
Note that the data used in this study has previously been analyzed by Dhawale et al.44,46. 

Single neurons in MC and DLS have stable activity patterns 

The combination of controlled and regimented experimental conditions, stable behavior, and continuous 
neural recordings provides a unique setting for quantifying the stability of an adaptable circuit driving a 
complex learned motor behavior12. Importantly, this experimental setup mirrors the scenario considered 
in our RNN model (Figure 2) and thus facilitates analyses of neural stability at the level of single neurons. 
Considering the PETHs of all units combined across all trials, we found that units in both MC and DLS fired 
preferentially during particular phases of the learned behavior (Figure 4A)46. Importantly, we found that 
the behaviorally locked activity profiles of individual units appeared highly stable over long periods of time 
(Figure 4B), reminiscent of our ‘stable’ RNN model (Figure 2D). 
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To quantitatively compare neural activity profiles across days, we constructed PETHs for each neuron by 
summing the spike counts across all trials on each day and convolving them with a 15 ms Gaussian filter 
(Figure 4B; Methods). We then computed the Pearson correlation 𝜌 between pairs of PETHs constructed 
from neural activity on different days as a function of the time difference between days (Extended Data 
Figure 3A). This is similar to our RNN analyses (Figure 2) and previous studies in visual and motor 
circuits43,46. When considering neurons recorded for at least two weeks, the mean PETH similarity 
remained high in both DLS and MC (Figure 4C; see Extended Data Figure 4A for other recording 
thresholds). This is consistent with results from the stable RNN model (Figure 2E) and suggests that 
learned motor behaviors are driven by single neuron activity patterns that do not change over the 
duration of our recordings, despite the structural and functional plasticity in these circuits9,10,15,51.  

For comparison with a hypothetical circuit where population statistics are retained but individual neurons 
change their firing patterns, we also computed pairwise correlations between non-identical neurons. 
These correlations were near zero in both MC and DLS, confirming that the high correlation over time for 
individual units is not due to a particular population structure of neural activity imposed by the task (Figure 
4C). These results demonstrate that single neuron activity associated with the learned motor skill is 
qualitatively stable over periods of several days to weeks (Figure 4B, 4C). Our findings also suggest that 
the stable latent dynamics identified in previous work38 could be a result of such stable single neuron 
dynamics (c.f. Figure 2E), which is further supported by the fact that alignment of the neural dynamics 
using CCA did not increase stability (Extended Data Figure 5A). 

In contrast to our RNN model, the experimental data contained neurons that were recorded for different 
durations (Figure 3D). This introduces additional variability and makes it difficult to assess stability across 
neurons without either discarding neurons recorded for short durations or losing information about 
neurons recorded for long durations. To combine information across more neurons, we considered the 
PETH similarity as a function of the time difference between PETHs for each neuron individually. An 
exponential model of the form 𝜌 = 𝛽𝑒!"# was fitted to the Pearson correlation (𝜌) between PETHs as a 
function of time difference 𝛿𝑡 for each neuron (Methods; see Extended Data Figure 6A for example fits). 
𝛼 = −𝜏$% is denoted as the ‘stability index’, since it corresponds to the negative inverse time constant 𝜏 
in an exponential decay model, and this stability index provides a single parameter summarizing the rate 
of drift for each neuron. 

We then considered the distribution of stability indices across neurons recorded for at least 4 days. In a 
null model, where single neuron activity remains constant, the PETH similarity should be independent of 
the time difference for all units (c.f. Figure 2E). The stability indices should thus be centered around zero 
corresponding to an infinitely slow exponential decay, with some spread due to trial-to-trial variability. 
The population-level distributions over 𝛼 were indeed centered near zero (Figure 4D). However, a 
permutation test across time differences revealed that all DLS recordings and two of the animals with 
recordings from MC did in fact exhibit slow but significant neural drift (p < 0.05). We saw this also when 
combining data for all neurons across animals within each experimental group (DLS: α&'()*+ = −0.012, 
τ&'()*+ = 87 days, p < 0.001; MC: α&'()*+ = −0.035, τ&'()*+ = 29 days, p < 0.001; permutation test).  
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Figure 4: Single neuron activity in DLS and MC is stable over time. (A) z-scored PETHs across trials and sessions for 
all units firing at least 100 spikes during the lever-pressing task for two example rats. Units were sorted according to 
the activity peak from a set of held-out trials. Horizontal axis indicates time-within-trial relative to the first lever 
press, and spike times were linearly time-warped to the two lever presses (Methods; see Extended Data Figure 7 for 
results without time-warping). Black triangles indicate the times of the presses. (B; top) Raster plots for two example 
units in DLS (left) and MC (right) illustrating firing patterns that are time-locked to the behavior over days to weeks. 
Horizontal lines indicate the beginning of a new day, and color indicates the progression of time from day 1 (light) 
to the last day of recording (dark). (B; bottom) Normalized PETHs for the four example units computed on three 
different days (early, middle, late) with corresponding colors in the raster. Our quantification of similarity in neural 
activity is based on the correlations between such PETHs. (C) Mean value of the correlation between PETHs 
calculated on separate days, averaged over all units recorded for at least 14 days from DLS (blue) or MC (red) and 
plotted as a function of time between days (n = 25 neurons for DLS; n = 24 neurons for MC; see Extended Data Figure 
3A for data from individual neurons and Extended Data Figure 4A for different recording thresholds). Shaded regions 
indicate standard error across units. Colored dashed lines indicate the similarity between non-identical neurons 
(lower) and in a resampled dataset with neural activity drawn from a stationary distribution (upper; Methods). (D) 
Median stability index for each animal. Horizontal dashed line indicates 𝛼 = 0 and error bars indicate first and third 
quartiles. Asterisks (*) indicate p < 0.05 for the median stability index being smaller than zero (one-sided permutation 
test; Methods; n = [89, 20, 14] neurons for DLS; [135, 6, 7] for MC). (E) Rolling median of the stability index (crosses) 
for units recorded for different total durations (x-axis). Bins are overlapping with each neuron occurring in two bins 
(see Extended Data Figure 6C for the non-binned data). Dashed lines indicate exponential model fits to the non-

-0.1 0.8time (s)

129

1

u 
it

DLS

-0.1 0.8time (s)

317

1

motor cortex

-2

4

day 2

day 1

day 8

time

fir
i 
g 
ra
te

day 1

day 9

time

day 1

day 11

time

day 1

day 8

time

DLS motor cortex

1 13time differe ce (days)
0

1

co
rre

la
tio
 

DLS
MC

2 14max Δt
(0.04

0.00

α

DLS MC

0

-0.4

α

*** * *

10 20 30
rec. duratio  (d.)

(0.05

0.00
α

10 20 30
rec. duratio  (d.)

A

B

C

D F

E



 

9 

binned data, and shadings indicate interquartile intervals from bootstrapping the units included in the model fits 
(Methods). (F) Stability indices of models fitted to increasing subsets of the data from (C), illustrating how longer 
recording durations lead to longer time constants. The maximum time difference considered for the model fit is 
indicated on the x-axis (see Extended Data Figure 8 for the full model fits). 

Short recording durations underestimate stability 

Our analyses of single neurons also included units recorded for relatively short durations. However, as 
noted in the introduction, recording over such short time spans could underestimate stability in the 
presence of latent processes that affect neural dynamics. Such processes may vary over timescales of 
hours or days52 but be constrained over longer timescales by homeostatic mechanisms, biological 
rhythms, or task constraints35–37. Even though such bounded physiological fluctuations will manifest as 
short-term drift in neural firing patterns, their contributions to estimates of neural stability will diminish 
as neural recording durations exceed the characteristic timescales of the underlying processes. Consistent 
with this hypothesis, we found that the stability index had a significant Pearson correlation with recording 
duration in both DLS (𝜌 = 0.19; bootstrapped 95% CI [0.08, 0.29]; Methods) and MC (𝜌 = 0.15; 95% CI 
[0.08, 0.22]). 

To better estimate drift over longer timescales, we binned the stability indices of all neurons by their 
recording duration. This revealed an apparent stability ranging from 𝛼 ≈ −0.05 for short recording 
durations to 𝛼 ≈ −0.01 for long recording durations (Figure 4E). To extrapolate to longer recording 
durations, we fitted an exponential model to the data of the form 𝛼 = −𝑎 − 𝑏𝑒$,	# (Figure 4E). The 
parameter 𝜏. = 𝑎$% provides an estimate of the asymptotic stability of the population and took values 
of 𝜏. = 103 days for DLS and 𝜏. = 75 days for motor cortex (interquartile ranges of 102-160 for DLS and 
71-123 for MC; bootstrapped model fits; Methods). To confirm that the increase in apparent stability with 
recording duration was not due to a bias in our data collection, we re-examined the neurons recorded for 
at least 14 days (Figure 4C). We subsampled the data from these neurons to simulate different recording 
durations and computed stability indices by fitting our exponential model to the average correlation 
across neurons as a function of time difference (Methods; Extended Data Figure 8). The stability indices 
increased with simulated recording duration in both DLS and MC (Figure 4F), consistent with the results 
from the full population of recorded neurons (Figure 4E). These findings suggest that constrained 
fluctuations in the physiology or behavior of animals can affect estimates of neural stability made from 
relatively shorter recordings, thus motivating long-duration single neuron recordings for estimating long-
term neural stability. 

Neural drift is correlated with behavioral changes 

In the previous section, we quantified the stability of motor circuits assuming a stable behavior and 
showed how such estimates can be affected by internal or external processes that shape neural activity. 
However, any residual drift in neural activity is still likely to be an underestimate of the true stability in 
the mapping from circuit activity to motor output. Indeed, even a perfectly stable neural system should 
have drifting neural activity patterns if the behavior itself is changing28,53. This might be expected since 
humans and animals alike are known to exhibit small behavioral changes both in terms of trial-to-trial 
variability54 and systematic drifts in mean behavioral output53. If such systematic behavioral drift is 
present in our lever-pressing task, it could explain some of the short-timescale drift and residual drift in 
neural activity over longer timescales (Figure 4). This, in turn, would suggest a more stable circuit linking 
neural activity to behavior than revealed by analyses of neural data alone. To quantify the degree to which 
the neural drift we see can be accounted for by accompanying changes in task-related motor output, we 
analyzed the kinematics of the timed lever-pressing behavior and how they changed over time. 
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To probe minor behavioral changes in the motor output, we first visualized the z-scored forelimb 
velocities. This discarded the dominant mean component of the motor output and revealed a slow drift 
in the behavior (Figure 5A, Extended Data Figure 2B). To quantify this drift, we computed the mean 
correlation between the trial-averaged forelimb velocities on separate days as a function of the number 
of days separating the observations. This confirmed the presence of a small but consistent decrease in 
kinematic similarity as a function of time difference, despite stable task performance (Figure 5B; Extended 
Data Figure 9). If the physical environment remains unchanged, any long-term behavioral drift must 
ultimately arise from changes in neural activity. Additionally, DLS is known to be involved in driving the 
behavioral output during our lever-pressing task44. These considerations suggest that the observed drift 
in neural activity could be in directions of state space that affect motor output and thus reflect these 
changes in behavior. To investigate this, we followed previous work13,28 and showed that the performance 
of a decoding model predicting behavior from neural activity and an encoding model predicting neural 
activity from behavior did not deteriorate over time (Extended Data Figure 5). However, the decoding 
analysis only considered a small subset of our data, where a group of 16 neurons was recorded 
simultaneously (c.f. Figure 3C), and it has previously been shown that encoders and decoders can suffer 
from omitted variable bias55,56. We therefore proceeded to investigate the relationship between neural 
and behavioral drift at a single neuron level without relying on such parametric model fits. 

To do this, we computed both the similarity of neural PETHs and the similarity of forelimb velocity profiles 
for each pair of consecutive days. We then exploited the fact that the behavioral output changes to 
different extents on different days (Figure 5A, 5B) and computed the correlation between neural and 
behavioral drift rates across all consecutive days for each neuron. This correlation should be positive if 
drift in neural activity is related to drift in motor output (Figure 5C). The mean of the distribution of 
correlations over all neurons was �̅� = 0.30 for DLS and �̅� = 0.25 for MC (Figure 5D). These values were 
significantly larger than null distributions generated by permuting the behavioral data to break any 
correlations with the neural drift (Figure 5E; p < 0.001; permutation test). This finding confirms that the 
drift in neural activity is directly related to changes in behavior and suggests that neural drift could be 
even slower for behaviors with stronger kinematic constraints 

We proceeded to investigate how this experimental correlation compared to a hypothetical system with 
a stable mapping between single unit activities and behavioral output. To do this, we fitted a linear-
nonlinear Poisson GLM57 to predict neural activity from behavior using data from a single day of recording 
for each unit (Methods). This model was used to generate synthetic neural activity on each trial from the 
recorded behavior, allowing us to compute the correlation between the simulated neural drift and the 
experimentally observed behavioral drift. Here, we found an average correlation with behavior of �̅� =
0.38 for DLS and �̅� = 0.22 for MC. The correlation values found in the experimental data were more 
similar to this stable synthetic circuit than to the null distribution with no relation between the drift in 
neural activity and behavior (Figure 5E). These results suggest that the observed drift in neural activity is 
driven, in large part, by a concomitant drift in task-irrelevant aspects of the behavior 
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Figure 5: Long-term drift of task specific movement patterns in the lever-pressing task. (A) Forelimb velocities for 
the example animal from Figure 3A, plotted as z-scores with the column-wise mean subtracted (see Extended Data 
Figure 2B for the other 5 animals). The mean-subtracted kinematics reveal slow behavioral drift in task-related 
movements across days and weeks. (B) Mean and standard deviation of behavioral similarity as a function of time 
difference, averaged across all pairs of days for the example animal in (A) (see Extended Data Figure 9 for data across 
all animals). (C) Similarity between PETHs on consecutive days plotted against the similarity in kinematic output 
across the corresponding days for an example unit. Each point corresponds to a single pair of consecutive days. (D) 
Distribution of the correlation between neural similarity and behavioral similarity on consecutive days for neurons 
recorded in DLS (blue) and MC (red). Vertical lines indicate average correlations. (E) Mean correlation between 
neural and behavioral similarity across neurons from (D), recorded in either DLS (blue; left panel) or MC (red; right 
panel). Dark grey histograms indicate control distributions constructed by permuting the days in the behavioral data. 
Light grey histograms indicate the distributions of correlations in synthetic datasets where neural activity is 
determined entirely by behavior via a GLM. 

Neural activity remains stable during an innate behavior 

The majority of studies on neural stability have considered behaviors that are either learned or adapted 
to artificial settings, such as navigating a maze13, reaching for points on a screen21,28,29, controlling a 
BCI27,29,31, or singing a song25,32. However, many of the behaviors we express are species-typical, or 
‘innate’. For example, sneezing, crying, and shivering require intricate patterns of sequential muscle 
activity but are not consciously controlled or learned. While we know less about the neural circuits 
controlling such innate behaviors, we can probe the stability with which they are encoded and compare 
them to behaviors that explicitly require plasticity. We therefore considered an innate behavior in the rat 
known as the ‘wet-dog shake’ (WDS), which is characterized by whole-body oscillations58,59. Importantly, 
while we know that MC and DLS are necessary for learning6 and executing44 the stereotyped motor 
patterns required for mastering the lever-pressing task, the WDS is generated by circuits downstream of 
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DLS and MC60. If degenerate or redundant circuits exhibit a higher degree of drift for a given behavior, we 
might expect less neural stability for the WDSs compared to the learned lever-pressing task. Alternatively, 
if sensorimotor circuits maintain a stable mapping to behavior more generally, we should expect single 
neuron activity patterns in MC and DLS to be stable also in relation to the WDS behavior. 

Given the stereotyped frequency of the WDS events, we could identify them using an accelerometer 
attached to the head of the animal (Methods). The animals performed on the order of 50 WDS per day, 
each lasting around 500 ms. Accelerometer readouts corresponding to WDS events were consistent across 
individual ‘trials’ (Figure 6A), allowing us to identify units in DLS and MC whose activity was locked to the 
behavior. Consistent with the stable single neuron activity observed during the learned lever-pressing 
task, the neurons exhibited qualitatively similar firing patterns over time (Figure 6B), though there was 
weaker task modulation overall (Extended Data Figure 10). PETH correlations also remained stable 
throughout the period of recording (Figure 6C, Extended Data Figure 3B, 4B), although the baseline trial-
to-trial similarity was lower than for the timed lever-pressing task. This is consistent with a lesser (or no) 
involvement of DLS and MC in the specification and control of WDS60. The observed stability of single 
neuron activity patterns in MC and DLS during WDS is therefore likely to reflect the stability of the 
sensorimotor system as a whole, including in the behaviorally-locked activity of connected areas, which 
presumably process sensory feedback and motor efference61. This is also consistent with our finding of 
stable motor cortical activity in the lever-pressing task, where motor cortex is only necessary for learning 
but not for executing the task6. 

To quantify the degree of stability for the population of recorded neurons during WDS, we computed 
stability indices for each neuron. Similar to our observations in the lever-pressing task, the stability indices 
were centered near zero, indicating largely stable circuits, but with a slow decay over time (DLS: 
α&'()*+ = −0.010, τ&'()*+ = 102 days, p < 0.001, n = 178 neurons; MC: α&'()*+ = −0.013, 𝜏&'()*+ =
75 days, p = 0.002, n = 93 neurons; permutation tests). As shown for the lever-pressing task (Figure 4E), 
we expected that this apparent drift would, in part at least, be the consequence of our finite recording 
durations. Consistent with this, stability indices increased with recording duration in DLS (Figure 6D; 
Pearson 𝜌 = 0.15; bootstrapped 95% CI [0.06, 0.24]; Methods) although no effect could be confirmed in 
MC (𝜌 = −0.01; 95% CI [-0.14, 0.11]). These results suggest that the neural activity patterns associated 
with this innate behavior are stable over long timescales, similar to our observations for learned motor 
skills. 

Based on our analyses of the lever-pressing task, we also wondered whether some of the residual neural 
drift could be accounted for by changes in the kinematics associated with the WDS. We found that the 
motor output during WDS exhibited a systematic drift over time for all animals (Extended Data Figure 9). 
To query whether this behavioral drift could be linked to the drift in neural activity, we computed the 
mean correlation between neural and behavioral drift on consecutive days. This analysis confirmed the 
presence of a weak but significant effect of behavioral drift on neural drift in DLS (Figure 6E; �̅� = 0.12, p 
= 0.002; permutation test). In MC, we could not confirm a significant effect (�̅� = 0.01, p = 0.44; 
permutation test). While these correlations are small, we found them to be consistent with the 
expectation from a synthetic dataset where neural drift is entirely driven by behavioral drift (Figure 6F). 
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Figure 6: Neural activity is stable during an innate behavior (WDS). (A; left) Vertical acceleration across all 12,775 
wet-dog shakes (WDS) recorded over 116 days in an example animal. Each row corresponds to a single ‘trial’. (A; 
right) We computed the mean acceleration across trials for each day. Line and shading indicate the mean and 
standard deviation across all days as a function of time-within-trial. All kinematics and spike times were linearly time-
warped to the median WDS frequency for each animal (Methods; warping coefficient = 1.01 ± 0.07; see Extended 
Data Figure 7 for results without time-warping). (B; top) Raster plots for two example units in DLS (left) and MC 
(right), illustrating units with firing patterns that are time-locked to the behavior over timescales of days to weeks. 
Color indicates the progression of time from day 1 (light) to the last day of recording (dark). (B; bottom) PETHs 
computed on three different days (early/middle/late) for each of the four example units. Vertical lines indicate peaks 
in the accelerometer trace. (C) Mean value of the correlation between PETHs calculated on separate days, averaged 
over all units recorded for at least 10 days in MC (red; n = 29 neurons) or DLS (blue; n = 79 neurons) and plotted as 
a function of time difference (see Extended Data Figure 4B for other recording thresholds). Shadings indicate 
standard error across units. Dashed lines indicate the similarity between non-identical neurons (lower) and in a 
resampled dataset with neural activity drawn from a stationary distribution (upper; Methods). (D) Rolling median of 
the stability index (crosses) for units with different recording durations. Bins are overlapping, with each neuron 
occurring in two bins (see Extended Data Figure 6D for the non-binned data). Dashed lines indicate exponential 
model fits to the non-binned data, and shadings indicate interquartile intervals from bootstrapping the units 
included in the model fits (Methods). (E) Distribution of the correlation between neural similarity and behavioral 
similarity on consecutive days for neurons recorded in DLS (blue) or MC (red). Vertical lines indicate average 
correlations. (F) Mean across units of the correlation between neural and behavioral similarity on consecutive days 
in DLS (blue; left panel) and MC (red; right panel). Dark grey histograms indicate control distributions from permuting 
the days in the behavioral data. Light grey histograms indicate the distributions of correlations in synthetic datasets 
where neural activity is determined entirely by behavior via a GLM. 
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Discussion 

We investigated whether stereotyped stable motor behaviors are driven by stable single neuron dynamics 
(Figure 1) in two major nodes of the motor system involved in the acquisition of motor skills – MC and 
DLS. Using an RNN model, we first demonstrated the necessity of long-term single neuron recordings for 
answering this question (Figure 2). We then performed such recordings in rats trained to generate highly 
stereotyped task-specific movement patterns (Figure 3)6,46. We found that the task-aligned activity of 
neurons in both MC and DLS was remarkably consistent over time, as expected for a stable control 
network. Recording single units for long durations was important to reveal this stability and distinguish it 
from constrained fluctuations on shorter timescales (Figure 4). We did observe a slow drift at the 
population level, which was accompanied by a concomitant drift in behavioral output (Figure 5). This is 
similar to previous reports of motor drift in expert performers53. Importantly, the drift in behavior was 
correlated with the recorded drift in neural activity, suggesting that the neural drift could be explained, in 
large part, by small but systematic behavioral changes. Finally, we showed that these observations extend 
to an innate behavior with trial-like structure (Figure 6), suggesting that stable sensorimotor circuits 
underlie stereotyped stable behavior, both learned and innate. 

Impact of behavioral variability in studies of stability 

Our results revealed how behavioral changes not fully constrained by the task can lead to the appearance 
of instabilities in the mapping between single unit neural activity and behavior. As a result, the reported 
neural stability in relation to both the learned and innate motor behaviors, and similar reports from other 
studies, should be seen as lower bounds on the neural stability associated with a hypothetical perfectly 
stable behavior. Additionally, the observation of correlated neural and behavioral drift highlights the 
importance of high-resolution behavioral measurements when investigating the stability of neural circuit 
dynamics, since most tasks studied in neuroscience do not fully constrain behavioral output62. 

While the observed slow drift in neural and behavioral space in expert animals suggests that the changes 
in neural circuits occur in directions of neural state space that affect motor output, it remains to be 
understood whether this behavioral drift constitutes a learning process that optimizes a utility function 
such as energy expenditure63 or magnitude of the control signal64. Alternatively, it could reflect a random 
walk in a degenerate motor space that preserves task performance22,53. Previous work has also suggested 
that motor variability could be explicitly modulated to balance exploration and exploitation as a function 
of past performance and task uncertainty65. If the behavioral drift we observe experimentally reflects such 
deliberate motor exploration, we might expect neural drift to be biased towards behaviorally potent 
dimensions to drive the necessary behavioral variability66. Conversely, if the behavioral drift is a 
consequence of inevitable drift at the level of neural circuits, neural drift might be unbiased or even 
preferentially target behavioral null dimensions to minimize the impact on task performance. 

Prior studies of neural stability 

It is worth noting the contrast between our results and previous studies that found task-associated neural 
activity in sensory and motor circuits to drift over time16,21,27,32,43. Some of these differences could reflect 
physiological differences between species, circuits, or cell types67. However, they could also reflect 
differences in experimental paradigm and methodology. For example, brain computer interfaces27 
circumvent the natural readout mechanism of the brain, which could affect the stability of learned 
representations. Additionally, using different statistical assessments of stability can lead to discrepancies 
in apparent neural stability33. Along these lines, we found that accounting for the bias arising from finite 
recording durations was necessary to reveal the stability of sensorimotor circuits, and that unaccounted 
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behavioral variability can confound analyses of representational drift in neural circuits. Furthermore, 
electrophysiology and calcium imaging can provide contrasting views on neural stability as discussed 
elsewhere46,68. For the behaviors we probed in this study, electrophysiological recordings were essential 
to resolve neural dynamics on timescales of tens to hundreds of milliseconds69. 

The finding of stable neural correlates of motor output by us and others25,28,29,31 can also be contrasted 
with recent work suggesting that neural activity patterns in posterior parietal cortex (PPC) change over a 
few days to weeks during a virtual navigation task with stable performance13. This discrepancy could arise 
from differences in methodology, recording duration, or limited behavioral constraints as discussed 
above. It could also suggest that higher cortical regions are more sensitive to internal or external latent 
processes that lead to the appearance of drift due to an unconstrained environment. However, an 
alternative explanation is that higher-order brain regions, such as PPC or prefrontal cortex, accommodate 
drifting representations to allow fast learning processes or context-dependent gating of stable 
downstream dynamics70,71. This is consistent with theoretical work on stable readouts from drifting neural 
codes67,71, with our results supporting the hypothesis that stable representations can be found closer to 
the motor periphery. These ideas are also consistent with a recent hypothesis in the olfactory domain that 
piriform cortex implements a ‘fast’ learning process with drifting representations, which drives a ‘slow’ 
learning process of stable downstream representations16. 

Maintaining stability in the face of dynamic network changes 

Our findings of long-term stability in both MC and DLS raise questions of how this is achieved 
mechanistically and whether there are active processes maintaining stability of network dynamics. 
Manipulation studies in both motor and sensory circuits suggest that such processes do exist in the case 
of large-scale perturbations. For example, it has previously been shown that motor circuits can recover 
their activity and function after invasive circuit manipulations by returning to a homeostatic set-point, 
even in the absence of further practice72. At the single neuron level, there are also intrinsic mechanisms 
keeping the firing rates of neurons in a tight range. Indeed, an increase in the excitability of individual 
neurons has been observed following sensory deprivation in both barrel cortex73 and V174,75. These 
observations suggest that the brain uses homeostatic mechanisms to overcome such direct perturbations. 
Of course, these perturbations are large and non-specific compared to the changes that occur during 
natural motor learning, which instead consist of gradual synaptic turnover and plasticity. However, it is 
plausible that some of the same mechanisms that help restabilize networks following large-scale 
perturbations could also be involved in maintaining network stability under natural conditions76,77. 

Taken together, our results resolve a long-standing question in neuroscience by showing that the single 
neuron dynamics associated with stereotyped and stable motor behaviors, both learned and innate, are 
themselves stable over long timescales. However, they raise another mechanistic question of how new 
behaviors are learned without interfering with existing dynamics – that is, how does the brain combine 
long-term single neuron stability with life-long flexibility and adaptability11,23,24,78? This is an essential yet 
unanswered question for neuroscience, and future work in this area will likely require more elaborate 
experimental protocols combining interleaved learning of multiple tasks with long-term neural recordings 
and high-resolution behavioral tracking to elucidate the mechanistic underpinnings of network stability 
and flexibility. 
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Methods 

Data Analysis 

Animal training and data acquisition 

The care and experimental manipulation of all animals were reviewed and approved by the Harvard 
Institutional Animal Care and Use Committee. Experimental subjects were female Long Evans rats (n = 6) 
that were 3-10 months old at the start of training. The animals were trained in an automated home-cage 
system on a lever-pressing task as described previously6,45,46. In short, animals were rewarded for pressing 
a lever twice with an inter-press interval of 700 ms. Electrophysiological data was recorded from layer 5 
of motor cortex (MC; n = 3) and from dorsolateral striatum (DLS; n = 3) and spike-sorted using the FAST 
algorithm described by Dhawale et al.46. Data from all animals have previously been used by Dhawale et 
al.44.  

Behavioral tracking 

Videos were recorded at 120 Hz during the lever-pressing task from two cameras positioned at the left 
and right side of the home cage relative to the lever. Automated behavioral tracking was carried out using 
DeeperCut49,50. For 500 frames from each camera, the corresponding forelimb of the animal was manually 
labelled. This was used as a training dataset for DeeperCut to generate full trajectories for all trials 
followed by interpolation with a cubic spline. Clustering of task trials based on behavioral readouts was 
carried out using forelimb positions tracked by DeeperCut as well as accelerometer data from an 
accelerometer attached to the skull of each animal. These features were embedded in a t-SNE space and 
clustered using density-based clustering79. Only trials falling in the largest cluster for each animal (range 
of 37% to 93% of trials across animals) and with inter-press intervals (IPIs) between 600 ms and 800 ms 
were included in the analyses to minimize behavioral variability. 

Detection and classification of wet dog shakes 

To identify wet-dog shakes (WDS), accelerometer data was first passed through a 12-20 Hz filter and the 
magnitude of the response calculated as 𝑚 = :𝑥/	 + 𝑦/ + 𝑧/. A moving average of 𝑚 was calculated 
with a window size of 1/6 seconds, and WDS events identified as periods with 𝑚 > 0.03. Peaks were 
found in a window of 800 ms centered at the middle of each WDS event and identified as local maxima or 
minima with a prominence of at least 0.07 times the difference between the highest maximum and lowest 
minimum in each channel. WDS events were aligned to the first positive peak in the vertical (z) channel 
and time-warped according to the inter-peak separation in this channel. Aligning to either horizontal 
channel gave similar results, and the vertical channel was preferred to avoid the degeneracy of the 
horizontal plane. 

Statistics and reproducibility 

Animals were randomly allocated to study groups and no statistical method was used to predetermine 
sample sizes. The investigators were not blinded to allocation during experiments and outcome 
assessment. To filter out putative spike sorting errors, we further filtered out a small subset of sessions 
(1.4 %), which were associated with an abrupt change in firing rate between sessions (p < 0.001 under a 
Gaussian approximation to the remaining firing rate changes) if it partitioned the data into a consistently 
high-firing and a consistently low-firing period. Omitting this step did not qualitatively affect any results. 
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Time-warping 

For all analyses of experimental data, we time-warped neural activity and behavior using piecewise linear 
warping80 with parameters that aligned the two lever-presses across all trials (see Extended Data Figure 7 
for analyses without time-warping). We did this since neurons in DLS and MC have previously been shown 
to have activity patterns linked to these events46. Time-warping of spike data in the lever-pressing task 
was carried out by linearly scaling all spike times between the first and second presses by a factor 𝜌 =
011	&2
#!"#$%

, where 𝑡#3)*4  is the inter-press interval (IPI) in a given trial. All spike times after the second press 

were shifted by 700	𝑚𝑠 − 𝑡#3)*4. Warping of behavioral data was carried out by fitting a cubic spline to 
the trajectories and extracting time points at a frequency of 120 Hz prior to the first press, 𝜌 × 120 Hz 
between the two presses, and 120 Hz after the second press. The warping coefficient 𝜌 had a mean of 
1.00 and a standard deviation of 0.07 across all trials and animals. 

Warping of spike data for the wet dog shakes was carried out by linearly scaling all spike times between a 
quarter period before the first peak (𝑡%) and a quarter period after the last peak (𝑡/) by a factor 𝜌 = #&'(

#!"#$%
, 

where 𝑡#3)*4  is the period of the oscillation in a given trial and 𝑡&'(  is the median period across all trials 
and sessions for a given animal. All spike times before 𝑡% were shifted by 𝑡% × (𝜌 − 1) and all spike times 
after 𝑡/ were shifted by 𝑡/ × (𝜌 − 1). Warping of behavioral data was carried out by fitting a cubic spline 
to the accelerometer data and extracting time points at a frequency of 300 Hz prior to 𝑡%, 𝜌 × 300 Hz 
between 𝑡% and 𝑡/, and 300 Hz after 𝑡/. The first detected positive peak was assigned a time of zero for 
each WDS. The warping coefficient 𝜌 had a mean of 1.01 and a standard deviation of 0.07 across all trials 
and animals. 

Data between 0.1 seconds before the first tap and 0.1 after the second tap was used for all analyses of 
the lever-pressing task, and data between 0.2 seconds before and 0.5 seconds after the first 
accelerometer peak was used for all WDS analyses. 

Similarity of neural activity 

PETHs were calculated for each session by summing the spikes across all trials for each time-within-trial. 
We convolved the resulting spike counts with a 15 ms Gaussian filter for the lever-pressing task, and with 
a 10 ms Gaussian filter for the WDS behavior. Pairwise PETH similarities between sessions were calculated 
as the Pearson correlation between u and v, where u and v are vectors containing the PETHs at 20 ms 
resolution. PETHs were normalized by z-scoring for visualization in Figure 4A for each unit, and by total 
spike count on each day for the PETHs in Figure 4B and 6B. Neural similarity as a function of time difference 
was calculated by computing the pairwise similarity of the PETHs for each unit across every pair of days in 
which the PETH contained at least 10 spikes. The pairwise similarities for each time difference were 
averaged across units in Figures 4C and 6C, after first averaging over all PETH pairs separated by the same 
time difference for each individual unit. 

We restricted all analyses to neurons that were ‘task-modulated’. To define task-modulation, we 
computed a PETH for odd and even trials separately for each recording day and considered the correlation 
between this pair of PETHs on each day. We then averaged the result across days for each neuron. A 
neuron was considered task-modulated if this measure of same-day similarity exceeded 𝜌1 = 0.15. This 
resulted in 221 of 361 neurons being task-modulated in DLS during the lever-pressing task, 456 of 787 in 
MC during the lever-pressing task, 317 of 1005 in DLS during the WDS behavior, and 267 of 540 in MC 
during the WDS behavior. 

Controls for stability as a function of time difference 
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In Figures 4C and 6C, we include a positive and a negative control for the neural similarity as a function of 
time difference. Here we provide a description of how these were computed. For the negative control, 
we computed the similarity between non-identical pairs of neurons. This can be seen as the asymptotic 
similarity in the limit of complete neural turnover but with constant population statistics (i.e. each neuron 
corresponds to a randomly sampled neuron from the population). This similarity was averaged across 
1000 pairs of randomly sampled neurons, with each pair being recorded in a single animal. For the positive 
control, we resampled the activity of each neuron on all trials in which it was recorded, with replacement, 
from the total distribution of recorded trials across days. We then computed the similarity as a function 
of time difference for all neurons as in the original data. The process of resampling and computing 
similarity was repeated 100 times, and the figures indicate mean and standard error across samples. This 
control thus corresponds to the hypothetical similarity in the case where all neurons have a fixed 
distribution over firing patterns (i.e. neural activity is stable), and where the global distribution of firing 
patterns is matched to the data. 

Alignment of neural dynamics 

Aligning neural dynamics using CCA requires simultaneous recording of many neurons. Since our 
recordings were asynchronous, this criterion was not generally met (c.f. Figure 3C). For this analysis, we 
therefore focused on a smaller subset of the data, where 16 neurons were simultaneously recorded for a 
week and fired at least 10 spikes during the task on each day. This dataset corresponds to days 8-14 of 
the DLS animal indicated in Figure 3C. We first computed the ‘single neuron similarity’ in this dataset by 
computing the average PETH correlation across all neurons for each pair of days. We then computed the 
mean and standard deviation of this measure across all pairs of days separated by the same time 
difference. This provided a measure of the similarity of neural dynamics in a constant coordinate system 
with the axes aligned to individual neurons. For comparison with this measure, we also computed the 
similarity of neural activity when aligning the neural dynamics using CCA for each pair of sessions. To do 
this, we followed the approach outlined by Gallego et al.38 to align the dynamics on day ‘b’ to the dynamics 
on day ‘a’ across all pairs of days. This alignment was carried out at the level of PETHs rather than single 
trials. For these analyses, we aligned the dynamics across all neurons and considered the average 
correlation across all the resulting dimensions (i.e. the similarity was the average of all CCs). This addresses 
the question of whether stability increases if we allow for linear transformations of the coordinate system 
in which we characterize neural dynamics. 

Exponential model fits and stability indices 

To assess the stability of neural activity over time, we examined the Pearson correlation 𝜌 between the 
computed PETHs as a function of the time difference 𝛿𝑡 between PETHs. We then fitted an exponential 
model 𝜌E = 𝛽𝑒!	"# to this data for each neuron recorded for at least 4 days. This was done to better 
quantify the putative drift in neural activity across neurons by learning a parameter 𝛼 that encompasses 
the rate of drift for each neuron. Here, 𝛽 is an intercept describing the expected similarity for two sets of 
trials recorded on the same day, and 𝛼 determines the rate of change of neural similarity. For this fit, we 
constrained 𝛽 to be between -1 and +1 by passing it through a tanh transfer function, since Pearson 
correlations must fall in this interval. The parameters were optimized to minimize the squared error 
between the predicted (𝜌E) and observed (𝜌) PETH correlations. This was done numerically, and the 
optimization was initialized from a linear fit to the data (𝜌E ≈ !

5
𝑡 + 𝛽). We denote the learned parameter 

𝛼 with units of inverse time as a ‘stability index’. This is related to the time constant of an exponential 
decay model via 𝛼 = −𝜏$%, with the fitting of 𝛼 being numerically more stable as it avoids 𝜏 approaching 
infinite values for slow decays. All data points with a time difference of at least 1 day were used to fit the 
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models. The mean error of the model fit was quantified for each neuron as %
6
∑ |𝜌) − 𝜌7H|6
)8% , where |⋅| 

indicates the absolute value, and the sum runs over all 𝑁 data points (Extended Data Figure 6B). 
Significance of median stability indices being different from zero was calculated by shuffling the vector of 
time differences for each unit 2,000 times, each time computing the median of the stability indices across 
all units and counting the fraction of shuffles where the median stability index was smaller than the 
experimentally observed median. 

For comparison with this single-timescale model, we also considered a model which decayed to a 
learnable baseline 𝛾: 𝜌E = 𝛽𝑒!	"# + 𝛾. We did this since the presence of constrained latent processes could 
lead to a decay in neural similarity to a non-zero asymptotic value at long time differences. Clearly, the 
single-timescale exponential decay arises as a special case of this model for 𝛾 = 0. However, it is also 
worth noting that a linear model, commonly used in the literature16,21,32,38,43,46, arises as 𝛾 → −∞. 
Intuitively, this is the case since any finite region of 𝜌E is in the initial linear regime of an exponential that 
decays to −∞. This model with a baseline thus serves as a generalization of both the linear and 
exponential models. When fitted to the neuron-averaged data and evaluated using hold-one-out 
crossvalidation, this model performed comparably to or better than the simple exponential decay model 
on all four datasets (recordings from DLS/MC across the two tasks). Additionally, using this same 
crossvalidated evaluation metric, the exponential model consistently outperformed a linear model, 
suggesting that this is a more appropriate single-timescale model. 

Stability as a function of recording duration 

To test for a significant correlation between stability indices and recording duration, we performed a 
bootstrap analysis. This involved resampling the set of neurons with replacement 10,000 times and 
computing the Pearson correlation 𝜌 between recording duration and stability index for each sampled 
set. The reported confidence intervals correspond to the 2.5th and 97.5th percentiles of the bootstrapped 
datasets. To extrapolate our stability indices to long recording durations across the population, we fitted 
a model to the stability index 𝛼 as a function of recording time 𝑇 of the form 𝛼E = −𝑎 − 𝑏 exp(−𝑐	𝑇). We 
fitted the model by minimizing the L1 error between the observations and model predictions, ℒ =
∑ |𝛼+ − 𝛼E+|+ , and restricted all parameters {𝑎, 𝑏, 𝑐} to be positive. In this model, the asymptotic stability 
is given by 𝜏. = lim

9→.
−𝛼E$% = 𝑎$%. To construct confidence intervals for this analysis, we subsampled the 

neurons included in the analysis with replacement and repeated the model fitting procedure. Interquartile 
ranges are reported as the 25th and 75th percentile of the corresponding distribution over 𝜏.. While the 
model itself was fitted to the raw data, we denoised the data for the visualization in Figure 4E by plotting 
the median stability index across neurons binned by recording duration. The bins were selected with 
partial overlap (each neuron occurred in two bins), and the x-value indicated for each data point in the 
figure is the average recording duration across neurons in the corresponding bin. 

To compute the stability as a function of subsampled recording duration in Figure 4F, we used successive 
maximum time differences from 𝛿𝑡&*; = 3 to 𝛿𝑡&*; = 13 days. We then considered the average 
similarity as a function of time difference in Figure 4C, using only data up to and including 𝛿𝑡&*;. We 
computed stability indices for these subsets of data as described above and plotted the stability as a 
function of 𝛿𝑡&*;. 

Behavioral similarity 

To compute behavioral similarity as a function of time difference, we first extracted instantaneous 
velocities of both forelimbs in the vertical and horizontal dimensions as the first derivative of the time-
warped cubic spline fitted to position as a function of time. We computed the pairwise behavioral 
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similarity between sessions as the Pearson correlation between the mean velocity profiles across all trials 
from the corresponding sessions. These correlations were averaged across both forelimbs and the 
vertical/horizontal dimensions. 

To compute the correlation between neural and behavioral drift rates, we considered the behavioral 
similarity on pairs of consecutive days together with the neural similarity across the corresponding days, 
quantified using PETH correlations as described above. We then considered the distribution of neural and 
behavioral similarities across all pairs of consecutive days for each recorded unit and computed the 
correlation between these two quantities. Finally, we computed the mean of this correlation across the 
population of units recorded from either DLS or MC. As a control, we permuted the behavioral data across 
days to break any correlations between the neural and behavioral drift rates and repeated the analysis. 
In Figure 5E and 6F, null distributions are provided across 5,000 such random permutations. For these 
analyses, we did not include the first day of recording for any unit since this data was used to fit the 
synthetic control data (see below). Furthermore, we only considered neurons with at least 4 pairs of 
consecutive recording days (after discarding the first day of recording), such that all correlations were 
computed from at least 4 data points. 

Stability of population decoding 

To investigate the stability of a population decoder, we considered the same week-long subset of data as 
for the alignment of neural dynamics. We first square root transformed the neural data and convolved it 
with a 40 ms Gaussian filter, similar to previous work20. We then trained a crossvalidated ridge regression 
model to predict the left and right forelimb trajectories from neural activity using data from each single 
day and tested the model on all other days. Finally, we computed the performance of this decoder as a 
function of time difference between testing and training. For all decoding, we offset behavior from neural 
activity by 100 ms to account for the fact that neural activity precedes kinematics, similar to previous work 
in primates20,81. To test whether the decoder exhibited a significant decrease in performance as a function 
of time difference, we performed a bootstrap analysis by resampling with replacement the similarity as a 
function of time difference (i.e. we resampled ‘pairs of days’) and computing the slope of a linear fit to 
the data. 

For comparison with this decoding model, we also considered decoding performance in an aligned latent 
space. To do this, we again considered all pairs of days and matched the number of trials on each pair of 
days to facilitate alignment (i.e. we discarded the later trials on the day with most trials). We then used 
PCA to reduce the dimensionality of the data from 16 to 10 for each day and trained our crossvalidated 
ridge regression model to predict behavior from this latent neural activity on the training data. At test 
time, we aligned the PCs on the test day to the PCs on the training day and predicted behavior from these 
aligned PCs. This follows the procedure described in previous work38. Note that alignment was in this case 
done at the level of single trials rather than trial-averaged PETHs. Finally, we considered the decoding 
performance as a function of time difference for this aligned decoder. 

GLM model fitting and analysis 

To investigate the correlation between neural and behavioral drift rates in synthetic data, where neural 
drift is determined entirely by behavioral drift (Figure 5E), we first fitted a linear-nonlinear Poisson GLM 
to the first day of recording for each neuron. This model took the form 𝒚#8% ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(exp[𝑾𝒙#8%]), 
where 𝒚# are the observed spike counts on day 𝑡 across time bins (here a concatenation of trials and bins 
within each trial), 𝒙# is a set of input features, and 𝑾 is a weight matrix that is learned by maximizing the 
log likelihood of the data. As input features, we used the velocity of both forelimbs in the x-y plane for the 
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lever-pressing task. For the WDS behavior, we used the accelerometer readout in 3 dimensions, 
concatenating both the signed acceleration and the unsigned ‘vigor’ as regressors. In both cases, we 
included a 200 ms window of kinematics surrounding each 20 ms bin of neural activity in the feature 
vector and added a constant offset. 

After fitting the model to data from day 1, we proceeded to generate synthetic neural activity by drawing 
spikes from the model 𝒚d#<% ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(exp[𝑾𝒙#<%]) for all subsequent days using the recorded 
behavior 𝒙. We then constructed PETHs for each unit and session, as described for the experimental data, 
and repeated the analysis correlating behavioral similarity with neural similarity on consecutive days for 
this synthetic dataset. We repeated the sampling and analysis process 5,000 times to generate a 
distribution of neural-behavioral correlations from this synthetic model. When performing these analyses, 
we discarded the first day of recording in both the synthetic and experimental data since this was used to 
fit the GLM. 

To test the stability of the encoding model (Extended Data Figure 5E), we computed predicted firing rates 
on all days not used for training. We then correlated the square root of the predicted firing rate with the 
square root of the observed spike count. Finally, we averaged this test correlation across all neurons that 
had a training correlation of at least 0.1 and were recorded for at least 7 days. As a positive control, we 
repeated this analysis using hold-one-out crossvalidation within the first day of recording, predicting 
neural activity on each trial from a model fitted to all other trials. 

Recurrent network modelling 

Network architecture and training 

All networks were trained using TensorFlow 2.7 and Python 3. The RNNs used in Figure 2 consisted of 250 
recurrently connected units and 5 readouts units, which were simulated for 250 evenly spaced timesteps 
to generate 5 target outputs drawn from a Gaussian process with a squared exponential kernel that had 
a timescale of 𝜏 = /=1

>
. The RNN dynamics were given by 

𝒙#?% = [𝒙# + τ$%(−𝒙# +𝑾3',𝒙# + 𝝐)]? 

𝝐 ∼ 𝑁(0, 0.2𝑰) 

𝒚# = 𝑾@A#	𝒙 + 𝒃 

𝑾3',, 𝑾@A#, 𝒃, and 𝒙1 were optimized using gradient descent with Adam42 to minimize the loss function 

ℒ	 =hi𝑦),#@A#CA# − 𝑦),##*3D'#j
/

),#

+ 10$E khl𝑊3',,)Fl
/

)F

+hl𝑊@A#,)Fl
/

)F

n 

We used a learning rate of 0.0005 and batch size of 20 to train all networks. 

Similarity measures 

100 instances of each network were run to constitute a set of trials (a ‘session’). Observation noise was 
added to all neural activities 𝑥 by drawing spikes from a Poisson noise model 𝑠 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑥), where 𝜆 
is a constant scaling factor for each session used to scale the mean activity to 6.25 Hz. PETHs were 
constructed by averaging the activity of each unit across all trials for a given network. PETH similarity was 
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computed as the Pearson correlation between PETHs as for the experimental data. Behavioral similarity 
was computed as the mean RNN output correlation across pairs of trials for each pair of sessions. Latent 
similarity was computed by first convolving the single-trial activity with a 30 ms Gaussian filter. The 
activities of non-overlapping groups of 50 neurons were then concatenated into 50xT matrices for each 
session to simulate different simultaneously recorded populations of neurons. Here, T is the number of 
time bins per trial (250) times the number of trials per session (100). The 50xT matrices were reduced to 
10xT matrices by PCA, and the resulting matrices were aligned by CCA across networks. The CCA similarity 
for a pair of networks and group of neurons was computed as the mean correlation of the top 4 CCs. This 
procedure was intended to mirror the analysis by Gallego et al.38. 

Interpolating networks 

To interpolate the networks in Figure 2D & 2E, two networks were first trained independently to produce 
the target output, generating two sets of parameters, 

𝜃% = {𝑾3',
% ,𝑾@A#

% , 𝒃%, 𝒙1%} and 𝜃/ = {𝑾3',
/ ,𝑾@A#

/ , 𝒃/, 𝒙1/}. 

Seven new parameter sets 𝜃(# were then generated by linear interpolation between 𝜃% and 
(0.3𝜃% + 0.7𝜃/), or equivalently by considering seven networks spanning the first part of a linear 
interpolation between 𝜃% and 𝜃/. We chose not to consider the full interpolation series since neural 
activity became uncorrelated before the parameters were fully uncorrelated (Figure 2E), and we were 
interested in the range of parameters where neural activity drifted. For each interpolated parameter set, 
𝑾@A#

(#  was fixed and the remaining parameters were finetuned on the original loss to ensure robust 
performance. Note that this procedure is merely used to generate a phenomenological model of a motor 
circuit with drifting connectivity and stable output, and it should not be interpreted as a mechanistic 
model. For the control network, the same interpolation and finetuning procedure was carried out, but in 
this case interpolating between 𝜃%and 𝜃%	(i.e. itself), such that the only differences between networks 
were fluctuations around the original connectivity due to finetuning. The whole procedure of training two 
initial networks and interpolating was repeated 10 times, and results in Figure 2E are reported as the 
mean and standard deviation across these repetitions. 

Data availability 

All data has been previously used by Dhawale et al.44. See 
https://github.com/KrisJensen/stability_paper_code for instructions on how to download the subset of 
data used for this paper. 

Code availability 

The code used to train all models, perform all analyses, and generate all figures is available online: 
https://github.com/KrisJensen/stability_paper_code. 
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Extended Data Figure 1: RNN parameter interpolation. (A) Mean correlation between the initial conditions (left), 
recurrent weight matrices (center), and readout weight matrices (right) of the simulated RNNs as a function of time 
difference for the stable and drifting networks. Shading indicates standard deviation across 10 repetitions of training 
and interpolation. 
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Extended Data Figure 2: Kinematics of all animals. (A) Heatmaps showing the forelimb trajectories of each animal 
on every trial across all days. x-axes indicate time within trial and y-axes indicate trial number from first (top) to last 
(bottom). Each column corresponds to a single animal (first three: DLS, last three: MC). The rows illustrate the 
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trajectories of the right forelimb parallel and perpendicular to the floor, followed by the left forelimb parallel and 
perpendicular to the floor. The second animal from the left corresponds to the example used in Figures 3A, 5A and 
5B. (B) Heatmaps showing the z-scored velocity of each animal on every trial across all days for the animals in (A). 
The rows illustrate the velocity of the right forelimb parallel and perpendicular to the floor followed by the left 
forelimb parallel and perpendicular to the floor. 
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Extended Data Figure 3: Similarity as a function of time difference for all neurons. We computed the PETH 
correlation as a function of time difference for all neurons, taking the average across all pairs of days separated by 
the same time difference for each neuron. This figure shows the average similarity as a function of time difference 
for neurons recorded in DLS (left) or MC (right) during the lever-pressing task (A) and the wet-dog shake behavior 
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(B). Upper panels indicate all neurons recorded for at least 3 days, lower panels indicate neurons which were 
recorded for at least 14 (A) or 10 (B) days and therefore included in Figures 4C or 6C. Neurons were sorted by 
recording duration. 

 

Extended Data Figure 4: Stability as a function of time difference for different recording durations. (A) We 
performed analyses as in Figure 4C, plotting the neural similarity as a function of time difference for neurons 
recorded for at least N days, with N ranging from 5 to 17 (c.f. N = 14 in Figure 4C). Error bars indicate standard error 
across units, and dashed lines indicate controls as in Figure 4C. (B) As in (A), now for the wet-dog shake behavior 
instead of the lever-pressing task (c.f. Figure 6C). 
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Extended Data Figure 5: Latent stability and neural decoding. It has previously been reported that stable neural 
activity can be identified in a common latent space even when there is a turnover of recorded neurons38. As we show 
in Figure 2E, this can be consistent with either stable or drifting single unit activity. While we have already shown a 
high degree of similarity for single neurons, here we investigate whether ‘aligning’ the neural activity between 
sessions can identify a common subspace with even higher similarity. These analyses require simultaneous recording 
of a large population of neurons, which in general was not the case in our dataset (c.f. Figure 3C). Instead, we 
considered a single week of recording in a single animal with recordings from DLS (day 8-14 in Figure 3C), where we 
simultaneously recorded 16 neurons firing at least 10 spikes during the task on each day. (A) We first computed the 
similarity as a function of time difference as the correlation between single neuron PETHs, averaged across neurons 
(black line). We then proceeded to align the neural activity on each pair of days using CCA and computed the 
similarity in the resulting aligned space as the average correlation across all dimensions. This CCA-aligned similarity 
was generally lower than the similarity averaged over individual neurons, suggesting that the neuron-aligned 
coordinate system is more stable than the CCA-aligned alternative (note that CCA performs a greedy alignment 
rather than finding the optimal alignment, which would provide an upper bound on the single neuron similarity). 
Shadings indicate standard error across all pairs of days with a given time difference. (B) We proceeded to consider 
population decoding of behavior from neural activity, using the same data as in (A). We fitted a linear model to 
predict the trajectories of the left and right forelimbs from neural activity on each day using crossvalidated ridge 
regression, and we tested the models on data from all other days. Here, we plot the performance as a function of 
time difference, averaged across the vertical and horizontal dimensions and both forelimbs. Line and shading 
indicate mean and standard error across pairs of days with a given time difference. (C) We proceeded to compute 
stability indices for the data in (B) to see whether there was a significant negative trend. We bootstrapped the 
individual datapoints (before taking the mean) 10,000 times and estimated stability indices from each surrogate 
dataset. The distribution over the resulting stability indices was not significantly smaller than 0 (one-sided p = 0.48). 
(D) While the analysis in (A) suggests that the single neurons provide a good coordinate system for stable 
representations, it does not address the question of whether an aligned low-dimensional manifold can provide 
better decoding38. We therefore proceeded to train a population decoding model as in (B), but where the decoder 
was trained on the top 10 PCs from a single day and tested on the top 10 PCs from every other day after alignment 
via CCA38 (blue dashed line). We found that decoding performance from this aligned latent space was almost 
identical to the decoding performance from raw neural activity (black line). This provides further evidence that the 
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stable aligned dynamics identified in previous work are the result of stable single unit tuning curves. Shading 
indicates standard error across pairs of days with a given time difference. (E) Finally, we considered how the 
relationship between kinematics and neural activity changed over time at a single neuron level. We used the GLM 
discussed in Figure 5E to predict neural activity from behavior. This GLM was trained on the first day of recording for 
each neuron and tested on each subsequent day. The figure shows the correlation between the predicted firing rate 
and true spike count as a function of time difference, averaged across all neurons which were recorded for at least 
a week and had a training correlation of at least 0.1. Blue indicates neurons recorded from DLS (n = 58 units), red 
from MC (n = 61 units), and shadings indicate standard errors across neurons. Dashed lines indicate the average 
correlation across neurons from hold-one-out crossvalidation on all trials from the first day of recording. 

 

Extended Data Figure 6: Exponential model fits and stability indices. (A) Plots of PETH similarity against time 
difference for four example units (colors) together with exponential fits illustrating a range of different decay rates, 
same-day similarities, and durations of recording. Note that one of these example units (cyan) exhibits an apparent 
increase in stability over time due to the noisy nature of the data. Indeed, in a perfectly stable model (such as the 
stable RNN in Figure 2E), neurons will be as likely to exhibit such an increase as they are to exhibit a decrease in 
similarity over time, leading to a median stability index of 0. Such noise is mitigated by increasing recording 
durations. (B) Distribution of the mean error of each model fit across the population of neurons recorded from MC 
(red) or DLS (blue). Vertical dashed lines indicate quartiles of the distributions. (C) Stability indices for all neurons 
recorded from DLS (left; blue) or MC (right; red) during the lever-pressing task. Solid lines indicate exponential fits 
as in Figure 4E. As the time difference increases, the variance decreases (due to the increase in data), and the median 
stability index gradually increases (c.f. solid lines). (D) As in (C), for the WDS behavior. 
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Extended Data Figure 7: Results are not dependent on time-warping. In this figure, we reproduce some of the key 
analyses of the paper after aligning trials by ‘trimming’ to a fixed duration rather than the time-warping used in the 
main text. (A) Neural similarity as a function of time difference for neurons recorded for at least 14 days in the lever-
pressing task in either DLS (blue) or motor cortex (red). Note the similarity with Figure 4C using time-warping. Lines 
and shading indicate mean and standard error across units. (B) Kinematic similarity in the lever-pressing task as a 
function of time difference across all animals. Solid line and shading indicate mean and standard error across animals 
after trimming. Dashed line indicates the mean after time-warping. Note that time-warping better aligns kinematics, 
which is the primary motivation for its use in the main text. (C) correlation between neural similarity and kinematic 
similarity on consecutive days (c.f. Figure 5D). (D-F) As in (A-C), now for the wet-dog shake behavior. 

 

Extended Data Figure 8: Exponential fits for different subsampled recording durations. Black line indicate the mean 
across units of the neural similarity as a function of time difference for units recorded for at least 14 days during the 
lever-pressing task (c.f. Figure 4C). We fitted exponential models to the mean data, considering only data up to and 
including increasing time differences (legend). As the subsampled ‘recording duration’ increases, so does the stability 
index learned in the exponential model for both neurons recorded in DLS (A) and MC (B). If the observed increase in 
stability with recording duration is due to latent processes with autocorrelations on the order of days, we would 
expect the neural similarity to decrease to some saturating baseline value, 𝛾. We therefore also fitted a model to 
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the average similarity across neurons as a function of time difference, which assumes a decay to such a baseline 
(𝜌 = 𝛽𝑒!	#$ + 𝛾; red dashed lines). This model yielded an asymptotic correlation of 𝛾 = 0.71 for DLS and 𝛾 = 0.58 
for MC, suggesting a high degree of neural similarity at long timescales. 

 

Extended Data Figure 9: Behavioral drift and inter-press intervals. (A) Correlations between mean velocity profiles 
plotted against time difference for all pairs of days in each animal. Top row: lever-pressing task; bottom row: wet 
dog shakes. Blue indicates animals with recordings from DLS, red from MC. (B) Distribution of correlations between 
time difference and behavioral similarity across all animals, generated by a bootstrap analysis of the data in (A). All 
animals exhibit a significant negative correlation between behavioral similarity and time difference in both the lever-
pressing task and wet dog shake behavior (p < 0.001; one-sided bootstrap test). (C) Inter-press interval (IPI) for each 
animal, convolved with a 200-trial Gaussian filter. Time is normalized from 0 to 1 for each animal (n = 9365 ± 6886 
trials, mean ± std). Black horizontal line indicates 700 ms. (D) We computed the IPI autocorrelation as a function of 
trial number and normalized time by the average number of trials per day for each animal (colored lines). Black line 
and shading indicate mean and standard error across animals. Task performance is only correlated over short 
timescales of 0.5-1 days despite behavioral drift on timescales of weeks (c.f. panel A). This suggests that behavioral 
changes are predominantly along ‘task-null’ directions that do not affect performance. 
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Extended Data Figure 10: Task-modulation of neurons in the lever-pressing task and wet-dog shake behavior. (A) 
A PETH was computed across all trials for each neuron in 20 ms bins, and the time bin identified with the maximum 
deviation from the mean across all time bins. The corresponding z-score was computed, and the distribution of 
absolute values of these z-scores plotted across all DLS neurons for the lever-pressing task (black) and wet-dog shake 
behavior (blue). (B) As in (A), now for neurons recorded from MC. 
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