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Reinforcement learning (RL) has a rich history in neuroscience,
from early work on dopamine as a reward prediction er-
ror signal (Schultz et al., 1997) to recent work proposing
that the brain could implement a form of ‘distributional re-
inforcement learning’ popularized inmachine learning (Dab-
ney et al., 2020). There has been a close link between theo-
retical advances in reinforcement learning and neuroscience
experiments throughout this literature, and the theories de-
scribing the experimental data have therefore become in-
creasingly complex. Here, we provide an introduction and
mathematical background tomany of themethods that have
been used in systems neroscience. We startwith an overview
of the RL problem and classical temporal difference algo-
rithms, followed by a discussion of ‘model-free’, ‘model-based’,
and intermediate RL algorithms. We then introduce deep
reinforcement learning and discuss how this framework has
led to new insights in neuroscience. This includes a par-
ticular focus on meta-reinforcement learning (Wang et al.,
2018) and distributional RL (Dabney et al., 2020). Finally,
we discuss potential shortcomings of the RL formalism for
neuroscience and highlight open questions in the field. Code
that implements the methods discussed and generates the
figures is also provided.

1

ar
X

iv
:2

31
1.

07
31

5v
3 

 [
q-

bi
o.

N
C

] 
 1

8 
D

ec
 2

02
4

https://colab.research.google.com/drive/1ZC4lR8kTO48yySDZtcOEdMKd3NqY_ly1?usp=sharing


2 Jensen

1 | INTRODUCTION

Humans and other animals learn from their experiences. Sometimes, this takes the form of explicit demonstration, as
is often the case during formal education. However, we also often have to learn from trial and error together with
feedback received from theworld around us – sometimes implicit and sometimes explicit. This is well illustrated by the
classical case study of Pavlov’s dogs, who learned to associate a so-called ‘conditioned stimulus’ (CS; e.g. the ringing of
a bell) with the availability of food shortly after (the ‘unconditioned stimulus’; US). Following a brief period of learning,
the dogs would start to salivate in response to the CS in advance of any food actually being served. This suggests that
the dogs had learned to associate the CSwith the availability of ‘reward’ in the form of food, and that they produced an
appropriate physiological response to take advantage of this food availability. Importantly, this occurred without any
explicit instruction or description of the sequence of events preceding food being served. Instead, the dogs learned
from experience with their environment and the presence of a salient, rewarding stimulus.
Such passive stimulus-response predictions are also called ‘Pavlovian learning’ and have been commonly used in neu-
roscience to study learning from external rewards (Niv, 2009). This forms a specific instantiation of the concept of
‘reinforcement learning’, which is a general term for settings where an agent learns from reward signals in the envi-
ronment rather than explicit demonstration, as is the case in ‘supervised learning’. Importantly, the past decades have
shown that principles of reinforcement learning can be used to explain not just behaviour, but also neural activity
in biological circuits (Niv, 2009; Botvinick et al., 2020). An explicit neural basis of RL was initially demonstrated in
foundational work by Schultz et al. (1997), which showed that the firing rates of dopaminergic neurons in the Ventral
Tegmental Area (VTA) reflected the difference between expected and actual ‘value’ when animals received a juice re-
ward following a CS consisting of a lever-press in response to a small light turning on. This provided a potential neural
substrate of the classical ‘temporal difference’ learning algorithm (Schultz et al., 1997; Sutton, 1988), which has since
been expanded to a wealth of evidence for reinforcement learning in neural dynamics (Niv, 2009; Dabney et al., 2020;
Watabe-Uchida et al., 2017). However, these classical algorithms are generally restricted to simple problem settings,
while humans and other animals are capable of solving complex high-dimensional problems involving extended plan-
ning and finemotor control. The field of ‘deep reinforcement learning’ has recently emerged to tackle such problems in
a machine learning setting, which has led to impressive results across a range of tasks (Mnih et al., 2013; Schrittwieser
et al., 2020;Wurman et al., 2022; Vinyals et al., 2019). Intriguingly, recent research has demonstrated that these deep
RL algorithms also have parallels in both behaviour and neural dynamics (Botvinick et al., 2020; Wang et al., 2018;
Dabney et al., 2020; Jensen et al., 2023; Aldarondo et al., 2024), suggesting that neuroscience can continue to learn
from advances in reinforcement learning.
In this review, we provide an overview of the reinforcement learning problem and popular algorithms, with a particular
focus on parallels and uses of these algorithms in neuroscience. This overview starts from classical tabular TD learning
and Q-learning algorithms, which have guided neuroscience research for decades. We then consider the important
distinction between model-based and model-free reinforcement learning, as well as methods that fall somewhere in
the gray area between these extremes, and discuss their neural correlates. Finally, we generalize the tabular methods
to the non-linear function approximation setting and the resulting deep RL methods, which have revolutionized ma-
chine learning in recent years. We do this with a focus on methods that have had a strong influence on neuroscience
to give the reader a better idea of the mathematical and computational background of recent neuroscientific findings.
These include the ‘meta-reinforcement learning’ model of PFC by Wang et al. (2018) and the ‘distributional reinforce-
ment learning’ model of VTA dopaminergic neurons by Dabney et al. (2020) in particular. We hope this review will
be useful both for those who are interested in the theory underlying reinforcement learning in neuroscience and for
those who want an overview of how the neuroscience literature builds on principles from reinforcement learning the-
ory. Throughout the paper, the focus will be on an intuitive understanding of the relevant RL methods, and explicit
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F IGURE 1 The reinforcement learning problem and cliffworld environment. (A)An agent (here the bird) interacts
with the world to maximize reward. This involves a balance between exploring potentially interesting new states (e.g.
searching for food in a new field) while also exploiting states known to yield high reward (e.g. the field that had many
worms yesterday). At a given point in time, the bird is in some state st from which it can take an action at , with the
probability of different actions determined by the ‘policy’ π (a |st ) , which is controlled by the agent. at then leads to a
change in the environment according to the non-controllable environment dynamics st+1, rt ∼ p (s, r |st , at ) . Here, rtis the empirical ‘reward’ received by the agent, and its objective is to collect as much cumulative reward as possible.
Often, reinforcement learning problems are divided into ‘episodes’, with the agent learning over the course of multiple
repeated exposures to the environment. This could for example consist of the bird learning over multiple days which
fields are likely to be rich in food, while minimizing the distance travelled and exposure to predators. (B) The ‘cliffworld’
environment, which will be used to demonstrate the performance and behaviour of a range of reinforcement learning
algorithms in this work. The agent starts in the lower left corner (location [0, 0]), and the episode finishes when it
encounters either the ‘cliff’ (dark blue) or the goal (yellow; location [9,0]). If the agent walks off the cliff, it receives
a reward of -100. If it finds the goal, it receives a reward of +50. In any other state, it receives a reward of -1. Such
negative rewards for ‘neutral’ actions are commonly used to encourage the agent to achieve its goal as fast as possible.
The arrows indicate the ‘optimal’ policy, which takes the agent to the goal via the shortest possible route that avoids
the cliff.

derivations are included only where we consider them conducive to such understanding. We refer to Sutton and
Barto (2018) for a more in-depth treatment of the underlying theory.

2 | PROBLEM SETTING

Here we provide a short introduction to the reinforcement learning problem in a discrete state and action space with a
finite time horizon – a common setting for neuroscience experiments consisting of repeated trials or episodes in a con-
trolled environment. In this setting, the environment consists of states from a discrete set s ∈ S = {s1, s2, . . .} |S|1 , and
the agent can take actions a ∈ A = {a1, a2, . . .} |A|1 . The environment is characterized by transition and reward prob-
abilities p (st+1, rt |st , at ) , where rt is the reward at time t . We will use r (s, a ) to denote either the reward when it de-
pends deterministically on the state and action, or its expectation otherwise. Wewill further make theMarkov assump-
tion that the next state and reward only depend on the current state and action, p (st+1, rt |st , at , st−1, at−1, . . . , s0, a0 ) =
p (st+1, rt |st , at ) .
We can now define a trajectory τ = {st , at , rt }Tt=0. The probability of a trajectory occuring is

pπ (τ ) = p (s0 )
T∏
t=0

p (st+1, rt |st , at )π (at |st ) . (1)

pπ (τ ) depends on the policy of the agent, π (a |s ) , which specifies the probability of taking action a in state s (Figure 1A).
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The objective is to learn a policy that maximizes the expected total discounted reward

J (π ) = Åτ∼pπ (τ ) [Rτ ] = Åτ∼pπ (τ )

[
T∑
t=0

γt rt |τ
]
, (2)

where Rτ := ∑T
t=0 γ

t rt |τ , andwe havewritten J (π ) since the policy uniquely specifies J in a stationary environment. In
Equation 2, γ is a ‘discount factor’, which stipulates that we should care more about immediate rewards than rewards
far in the future. We can provide three interpretations for this discount factor. One is that agents intrinsically care
more about immediate reward than distant reward. A second is that there is a fixed non-zero probability (1− γ ) of the
current ‘episode’ or environment terminating or changing at each timestep, in which case we should weight putative
future reward by the probability that we are still engaged in the task at that time. The third view is that γ simply
provides a tool for reducing the variance of our learning methods, especially in temporally extended tasks. This third
view is most compatible with the fact that evaluation of RL agents after training is generally done without discounting.
Since J (π) depends on the policy of the agent, it is possible to search in the space of policies for one that maximizes
J , which is the topic of reinforcement learning. It is often assumed that the experience {τ } is generated by the agent
acting according to its policy, and the resulting experience is then used to update the policy in a way that increases
J (π ) . However, ‘off-policy’ and ‘offline’ reinforcement learning methods also exist, where the agent learns on the
basis of experience generated by a policy different from π (Levine et al., 2020; Section 11.2). This can be either
an ‘old’ version of the agent itself, when it acted according to a different policy, or data generated by an entirely
different agent. Off-policy learning is important for biological organisms, where learning can happen ‘offline’ during
sleep after initial data collection during wake, or from observing other individuals (also the topic of ‘imitation learning’;
Section 11.3).

3 | TEMPORAL DIFFERENCE LEARNING

A simple way to maximize reward in an environment is to learn the ‘value’ of different states, and then move towards
states with high value. The potential importance of such an algorithm for neuroscience is evident from the value-
seeking behaviour of many organisms, and the widespread findings of neural ‘codes’ for value across the brain (Schultz
et al., 1992; Padoa-Schioppa and Assad, 2006; Rushworth et al., 2011). This leaves the question of how such value
codes can be learned in a biologically plausible setting.
One answer to this question takes the form of the classical ‘temporal difference learning’ algorithm (Sutton, 1988;
Sutton and Barto, 2018). This involves defining a value function for a given state s and policy π , which quantifies the
expected future reward when following π starting from s :

V π (s ) = Åτ∼pπ (τ )

[∑
t ′≥t

γt
′−t rt ′ |st = s

]
. (3)

Here, Åτ∼pπ (τ ) [ · ] indicates an expectation taken over trajectories τ resulting from the agent following the policy π .
For the true value function, we can expand this as a self-consistency equation

V π (s ) = rπ (s ) +
∑
s ′

pπ (st+1 = s ′ |st = s )Åτ∼pπ (τ )

[ ∑
t ′=t+1

γt
′−t rt ′ |st+1 = s ′

]
(4)

= rπ (s ) + γ
∑
s ′

pπ (st+1 = s ′ |st = s )V π (s ′ ), (5)
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where pπ (st+1 = s ′ |st = s ) = ∑

a π (a |s )p (st+1 = s ′ |st = s, at = a ) is the probability of transitioning from s to s ′

under π , and rπ (s ) = Åa∼π [r (s, a ) ] is the expected reward in state s , averaged over actions. Importantly, Equation 5
would not hold if V π (s ) was not the true value function (Sutton and Barto, 2018). When learning an approximate
value functionV (s ) , we can therefore use this bootstrapped self-consistency relation as an objective function:

L ∝
(
V (s ) −

(
rπ (s ) + γÅpπ (s ′ |s )

[
V (s ′ )

] ) )2
, (6)

Gradient descent w.r.tV (s ) gives us an update rule
∆V (s ) ∝ − ∂L

∂V (s ) (7)
∝ −V (s ) + rπ (s ) + γÅpπ (s ′ |s )

[
V (s ′ )

] (8)
≈ −V (st ) + rt + γV (st+1 ) . (9)

The last line approximates the expected update with a single sample corresponding to the states and reward actually
experienced. As more experience is collected and many small gradient steps are taken according Equation 9, these
single-sample estimates average out to the expectation in Equation 8 (Figure 2A). Variants of this algorithm can also
learn about multiple past states at once using the notion of eligibility traces (Sutton and Barto, 2018). However, Equa-
tion 9 is the canonical temporal difference learning rule (Sutton, 1988), and it leads to learning dynamics where the
temporal difference error δt := −V (st ) + rt + γV (st+1 ) gradually propagates from the rewarding state to prior states
that predict the upcoming reward (Figure 2C).
This gradual propagation of prediction errors from the reward state to its predecessors has been of great interest in
neuroscience. In particular, classical work by Schultz et al. (1997) demonstrated a similar pattern of neural activity in
dopaminergic VTA neurons, which formed the foundation of a now well-established theory that dopamine provides a
biological reward prediction error signal that drives learning (Niv, 2009;Watabe-Uchida et al., 2017). At a behavioural
level, this is supported by experiments showing that artificial stimulation of dopamine neurons can be a strong driver
of learning (Olds and Milner, 1954; Tsai et al., 2009; Steinberg et al., 2013). The simple narrative of dopamine as a
reward prediction error has also been challenged in recent years (Coddington and Dudman, 2019; Howe et al., 2013;
Horvitz, 2000), which has led to theories of dopamine as a more general prediction error for both value but also other
quantities like salience and movement (Kakade and Dayan, 2002; Gershman et al., 2024).
Much classical work in neuroscience has focused on value learning in Pavlovian conditioning tasks, but animals in
natural environments also have to take actions on the basis of this information. However, after learning a value
function, it can be used for optimal action selection if we can estimate r (s, a ) and p (s ′ |s, a ) . We can then compute
a ‘state-action value’ Qπ (s, a ) , defined as the expected discounted future reward associated with taking action a in
state s and then following policy π:

Qπ (s, a ) := Å

[∑
t ′=t

γt
′−t rt ′ |st = s, at = a

]
= r (s, a ) + γ

∑
s ′

p (s ′ |s, a )V π (s ′ ) . (10)

Approximating the true value function V π by the learned value function V in Equation 10 yields an approximate
state-action value Q , which can be used to choose the action with the highest expected reward,

a∗ (s ) = argmaxaQ (s, a ) . (11)
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F IGURE 2 Temporal difference learning. (A) Value functions aquired through temporal difference learning (Equa-
tion 9) while acting according to either a random (top) or an optimal (bottom) policy. These simulationswere performed
with a random start state in the cliffworld environment to ensure full coverage of the space. Dark blue indicates neg-
ative expected reward (-100) and yellow indicates positive expected reward (+50). These simulations used a learning
rate of α = 0.05 and no temporal discounting (γ = 1). Under the random policy, states near the cliff have low value
even if they are close to the goal, since the agent often falls off the cliff from there. Under the optimal policy, all
states have high expected reward, since the agent always reaches the goal. States nearer the goal have slightly higher
value than those further away. (B) Empirical reward as a function of episode number for a TD-learning agent that acts
according to Equation 11 while updating its value estimates according to Equation 9. For this agent, action selection
assumes access to a ‘one-step’ world model in order to evaluate the consequence of each putative action. The agent
gradually converges to an optimal policy. Parameters for the agent are as in (A), except that the start state is always
the lower left corner. (C) TD error (Equation 9) as a function of the step number along the optimal path for the agent
in (B) at different stages of learning (green to blue). This TD signal gradually propagates backwards from the reward to
preceding states, mirroring biological recordings of dopamine activity (Schultz et al., 1997). (D) Value function learned
by a greedy TD agent as in (B), plotted either early (top) or late (bottom) in training. Early in training, the agent has
learned that the cliff is bad but doesn’t know where the goal is or how to get there. Late in training, the agent has
learned a value function that locally resembles the optimal value function from (A), while it has not learned the value
of distant states that are rarely or never visited from the start state. This is a potential shortcoming of ‘greedy’ agents
that can easily converge to a sub-optimal local maximum in more complicated environments. For this analysis, we
used a high learning rate of α = 0.5 to make the early TD updates larger and therefore more visible.

Updating the value function according to Equation 9 while acting in the environment according to Equation 11 leads
to an agent that gradually learns to take better actions as it learns a better value function (Figure 2B-D). This provides
a biologically plausible algorithm for reward-driven learning in agents with access to a one-step predictive model.

4 | Q-LEARNING

In some cases, we may not know the transition function or it could be expensive to simulate. Additionally, it has been
found that dopamine activity can reflect learning signals not just for state values but also for action values (Roesch
et al., 2007; Morris et al., 2006). This suggests an alternative model of biological learning, where animals directly
learn the state-action values defined in Equation 10. This is in contrast to the algorithm in Section 3, where the agent
only learned the state values, and then computed the action values at decision-time using a one-step world model.
Q-learning is the most prominent model for learning state-action values, and it has commonly been used to explain
animal behaviour and neural activity (Niv, 2009; Mattar and Daw, 2018).
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To learn the Q-values necessary for action selection directly, we start by expanding Equation 10,

Qπ (s, a ) = r (s, a ) + γ
∑
s ′

p (st+1 = s ′ |st = s, at = a )
∑
a′

π (a ′ |s ′ )Qπ (s ′, a ′ ) . (12)

For the greedy policy πg (a |s ) := Ia=a∗ (s ) (where the indicator function Ia=b = 1 for a = b and 0 otherwise), this gives
rise to a self-consistency expression for the state-action values:

Qπg (s, a ) = r (s, a ) + γÅs ′∼p (s ′ |s,a )
[maxa′Qπg (s ′, a ′ )

]
. (13)

Importantly, this self-consistency expression only holds when the Q-values have converged to the true expected
rewards, and the associated greedy policy is therefore optimal (Sutton and Barto, 2018). We can now use Equation 13
as an objective by defining

L ∝
(
Q (s, a ) −

(
r (s, a ) + γÅs ′∼p (s ′ |s,a )

[maxa′Q (s ′, a ′ ) ] ) )2, (14)
Gradient descent w.r.t Q (s, a ) gives us an update rule

∆Q (s, a ) ∝ −Q (s, a ) + r (s, a ) + γÅs ′∼p (s ′ |s,a )
[maxa′Q (s ′, a ′ ) ] (15)

≈ −Q (st , at ) + rt + γmaxa′Q (st+1, a ′ ) . (16)
This is the so-called Q-learning update rule (Watkins, 1989; Figure 3A), where we have estimated the expectation
with the single sample actually seen by the agent in the last line.
Q-learning is guaranteed to converge to the optimal policy in the limit of infinitesimal learning rates and infinite sam-
pling of the state-action space (Watkins and Dayan, 1992; Sutton and Barto, 2018). However, following the greedy
policy a∗ (s ) = argmaxaQ (s, a ) before convergence of the Q-values can lead to undersampling of the state-action
space and poor performance. It is therefore common to either use an ‘ϵ-greedy’ policy, π (a |s ) = ϵ/|A |+(1−ϵ )Ia=a∗ (s ) ,
or a softmax-policy, π (a |s ) ∝ exp(βQ (s, a ) ) , to collect the experience used to update the Q-values (Figure 3B). Such
exploration strategies and their biological correlates are discussed in more detail in Section 9.
These approaches make Q-learning an ‘off-policy’ algorithm, since the policy used in the learning update (the greedy
policy) is different from the policy used for action selection (the stochastic policy). An on-policy alternative known
as ‘SARSA’ (state-action-reward-state-action) is also commonly used, where the update rule uses the Q-value corre-
sponding to the action at+1 sampled at the next timestep instead of the greedy action (Figure 3C):

∆Q (st , at ) ∝ −Q (st , at ) + rt + γQ (st+1, at+1 ) . (17)
This will converge to the true Q-values for a given policy π , similar to how the TD learning rule in Equation 9 converges
to the true value function for a given policy, again under assumptions of infinite sampling of the space.
When animals have to choose between actions with different values, studies have found evidence for midbrain
dopamine neurons encoding the prediction error used for either Q-learning (Roesch et al., 2007; Niv, 2009) or SARSA
(Morris et al., 2006; Niv, 2009). Theymay therefore not just be abstract learning algorithms, but instead have plausible
implementations in biological neural circuits. However, themethods considered so far also have notable shortcomings.
For example, the amount of data needed to learn state(-action) values and the assumption of a stationary environment
can be prohibitive for animals needing to act in a rapidly changingworld, where bad decisions have fatal consequences.
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F IGURE 3 Q-learning. (A) Empirical reward as a function of episode number for Q-learners with different levels
of stochasticity in their policy (ϵ ∈ {0, 0.1, 0.2}; legend). For these simulations, we used a learning rate of α = 0.05

for all agents and no temporal discounting (γ = 1). The agent with ϵ = 0 converges to an optimal policy, similar to
the TD agent in Figure 2A. However, convergence is in this case slower despite using the same learning rate, because
the Q-learner has to learn about each action independently, while the TD agent used its one-step world model to
aggregate learning across actions reaching the same state. In this cliffworld environment, increasing epsilon leads to
worse performance since it increases the probability of falling off the cliff. Additionally, there is no risk of getting stuck
in a local minimum since there is only one rewarding state, which decreases the value of exploration. Lines and shading
indicate mean and standard error across 10 simulations. (B) As in (A), now for a non-cliffworld grid environment with
two goals: one with a reward of +20 at location (0, 4), and one with a reward of +50 at location (5,0). In this case,
having non-zero epsilon can increase the probability of discovering the ‘high reward’ goal rather than getting stuck
with a locally optimal policy of moving to the ‘low reward’ goal. In these simulations, we used a learning rate of α = 1,
since this effect is less robust with lower learning rates that lead to more exploration of the environment across all
agents. (C) Cliffworld policy learned by a Q-learning (top) or SARSA (bottom) agent with ϵ = 0.3. Colours indicate the
maximum value of any action in a state from blue (-100) to yellow (+50), and arrows indicate which action has the
highest value. The Q-learning agent learns to move right above the cliff, because this is the optimal thing to do under
the assumption that subsequent actions are also optimal. This is because it is an ‘off-policy’ algorithm that does not
take into account the actual policy of the agent. In contrast, the SARSA agent learns to move a ‘safe distance’ away
from the cliff, since it is an ‘on-policy’ algorithm that takes into account the finite probability of the agent choosing
to move off the cliff from upcoming states. Q-learning agents are also frequently trained using a stochastic ϵ-greedy
policy and then evaluated with the greedy policy corresponding to ϵ = 0, or they can be trained while ‘annealing’ ϵ
from some finite value to 0 over several episodes to allow for initial exploration.

5 | MODEL-FREE AND MODEL-BASED REINFORCEMENT LEARNING

We have so far considered what is known as ‘model-free’ reinforcement learning algorithms. These involve learning a
stimulus-response function that says ‘when in state s , take action a ’. Such algorithms do not requiremuch computation
at decision time, where they rely on cached state or action values. However, it can require a lot of experience with
the environment to learn these model-free policies, and they can be inflexible in changing environments. This is
incompatible with many aspect of animal behaviour, which we know is adaptive and can benefit from ‘latent learning’
in an environment before a reward-driven task is ever encountered (Blodgett, 1929; Tolman, 1948).
On the other hand, ‘model-based’ reinforcement learning uses a model of the world to simulate the consequences
of different actions at decision time. This can be much more data efficient, since learning a world model is often
easier than learning a full policy (Figure 4A). In machine learning settings, model-based RL has exhibited impressive
performance across a range of tasks with large state spaces, including Atari, chess, shogi, and Go (Silver et al., 2018;
Schrittwieser et al., 2020; Deisenroth and Rasmussen, 2011). In a biological context, the idea of first learning a model
of the environment, and then using it to guide reward-driven behaviour also provides one plausible explanation for
latent learning and other types of rapid adaptation. However, model-based decision making can be computationally
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intensive at decision-time, which is a challenge for animals that rely on rapid decision making for survival (Figure 4B).
In model-based RL, an approximate transition-and-reward function p̃ (s ′, r |s, a ) is learned from past experience. Once
this model has been learned, it can be used for planning at decision time. This can be done for example by expanding
the Q-value relation from Equation 13:

Q (s t , at ) ≈ r (s t , at ) + γÅp̃ (st+1 |st ,at )
[argmaxat+1Q (s t+1, at+1 ) ] (18)

≈ r (s t , at ) + γÅp̃ (st+1 |st ,at )
[argmaxat+1 [

r (s t+1, at+1 ) + γÅp̃ (st+2 |st+1,at+1 )
[argmaxat+2Q (s t+2, at+2 ) ] ] ] (19)

= . . . (20)
If the environment is determinstic, p (s ′ |s, a ) is a delta function, and otherwise the next-state expectations may need
to be approximatedwithmultiple samples. Unfortunately, optimizing over all possible action sequences in Equation 18
is in general an exponentially large search problem in the planning depth, which makes it infeasible for any reasonably
sized problem. It is therefore common to either use ‘depth-first search’ with limited breadth, or ‘breadth-first search’
with limited depth. In breadth-first search, we consider all possible actions at each level of the search tree but termi-
nate the search at a finite depth, instead using cached ‘model-free’ state-values to estimate the reward-to-go from
the terminal states. Such ‘plan-until-habit’ has also been proposed as a model of human behaviour (Keramati et al.,
2016). In depth-first search, we instead sample a series of paths from st to termination (or some upper bound), using
a heuristic to prioritize actions expected to be good, and then pick an action with high expected reward (Huys et al.,
2012).
For both of these strategies, it is necessary to trade off the temporal opportunity cost of planning with the increase in
expected reward (Botvinick and Cohen, 2014; Agrawal et al., 2022). This has been a popular research area in cognitive
science, where a wealth of literature on ‘resource-rational’ decisionmaking has emerged in recent years (Griffiths et al.,
2019; Callaway et al., 2022). However, this literature has often focused on the behaviour of optimal agents, with less
focus on the learning process and neural mechanisms that might implement the necessary computations. Bridging
this gap, recent work has suggested that frontal cortex and striatum might initially store a ‘model-free’ policy in its
network state, which is gradually updated with model-based information from the hippocampal formation until the
policy improvement is outweighed by the temporal opportunity cost of planning (Jensen et al., 2023).
While several model-based and model-free reinforcement learning methods have thus been developed and used to
model animal learning and behaviour, it remains an open question when and whether these different strategies drive
animal behaviour. A different line of research has therefore explicitly investigated the balance between model-based
and model-free RL in biological agents (Daw et al., 2005; Geerts et al., 2020; Lengyel and Dayan, 2007), where the
choice between the two approaches is thought to be guided by some notion of optimality on the basis of available
resources and uncertainty about the environment. A popular paradigm for these studies is the so-called ‘two-step’
task developed by Daw and colleagues (Daw et al., 2011; Momennejad et al., 2017; Wang et al., 2018; although note
Akam et al., 2015).
Such work has shown that animals can use both model-free and model-based decision making, with the dorsolateral
striatum being particularly important for model-free reinforcement learning (Yin et al., 2004, 2005), and the dor-
somedial striatum, prefrontal cortex, and hippocampal formation being important for model-based decision making
(Vikbladh et al., 2019; Geerts et al., 2020; Miller et al., 2017; Niv, 2009; Killcross and Coutureau, 2003). This also has
interesting parallels to recent work in motor learning, where the basal ganglia were found to be sufficient for ‘habitual’
motor sequences even in the absence of motor cortex, while motor cortex was necessary for more flexible motor be-
haviours that are likely to require a high-level ‘schema’ of the task structure (Mizes et al., 2023b,a). In Section 9 wewill
see how combining these model-based andmodel-free ideas with deep learning can lead to human-level performance
in tasks such as chess and Go that require long-term planning.
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6 | THE SUCCESSOR REPRESENTATION

As we saw in the previous section, an important distinction can be made between model-free reinforcement learn-
ing methods, which cache stimulus-response mappings based on prior experience, and model-based reinforcement
learning methods, which compute a policy by simulating possible futures using a world model at decision-time. How-
ever, we have also noted how animals both need the flexibility of model-based methods as well as the rapid decision
making afforded by model-free methods. It has therefore been suggested that animals use intermediate methods
that combine some model-free and some model-based features. A particularly prevalent theory has been that of the
‘successor representation’ (SR), which has been proposed to explain both human behaviour (Momennejad et al., 2017)
and features of neural activity (Stachenfeld et al., 2017). In particular, the SR allows for flexible adaptation to changing
reward functions without having to perform expensive simulations at decision time.
The SR (Dayan, 1993) rewrites the expected reward starting from state s as:

V π (s ) = Åπ

[∑
t=0

γt rt |s0 = s

]
(21)

=
∑
t=0

γt
∑
s ′

pπ (st = s ′ |s0 = s )r (s ′ ) (22)
=

∑
s ′

r (s ′ )
∑
t

γt pπ (st = s ′ |s0 = s ) (23)
= rTmπ

s . (24)
Here, r is a vector of the average reward associated with each state, and mπ

s is a vector of the expected discounted
future occupancy of state s ′ if the agent starts in state s and follows the policy π:

M π
ss ′ =

∑
t=0

γt pπ (st = s ′ |s0 = s ) . (25)

The full matrixMπ , constructed from stacking themπ
s corresponding to all states s , is denoted the ‘successor matrix’,

and it allows us to write down a vector of expected rewards from all states as
vπ = Mπr. (26)

Here, we have retained the superscript π to indicate that the successor matrix and value function depend on the policy
of the agent, which affects the expected occupancy of different states. Having computed the value of each state, we
can perform action selection using Equation 11.
The flexibility of the successor representation arises when the reward structure of the environment changes, r → r′.
We can now compute the expected reward associated with each state under the new reward function and old policy,

v′π = Mπr′ . (27)
This provides a better starting point than the old policy and reward function (Figure 4C), but the SR does not generalize
perfectly since the new value function can lead to policy changes and therefore having to updateM (Figure 4D). The
successor matrix can be learned by temporal-difference learning when transitioning from st , analogous to Equation 9:

∆M π
st s ′ ∝ −M

π
st s ′ + Ist =s ′ + γM

π
st+1s ′

. (28)
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F IGURE 4 Model-based reinforcement learning. (A) Learning curves for model-free (MF) and model-based (MB)
RL agents. TheMB agent used depth-first search to compute an optimal path at each decision point, gradually learning
the reward and transition functions while exploring the environment. The MF agent was a Q-learning agent with
ϵ = 0 and learning rate α = 1. (B) Wallclock time needed to run 100 episodes of cliffworld with either the MB or
MF agents from (A), as a function of the length of the environment. While the MB agent required less experience
to learn a good policy, the wallclock time per episode was much larger than for the MF agent. This illustrates an
important balance between model-based and model-free reinforcement learning, where MF methods usually require
more experience but MB methods require more compute at decision time. (C) Learning curve for an agent using
the successor representation (SR) together with learning curves for the model-based agent in (A) and the greedy TD-
agent from Figure 2. The goal was moved from location (9, 0) to location (0, 4) at episode 40 (vertical black line), and
location (9, 0) was instead given a reward of -5. The MB and SR agents had their reward functions updated to reflect
this change and rapidly adapted their policies, while the TD agent had no such mechanism for robustness to changing
reward functions. Reward curves were convolved with a Gaussian kernel (σ = 3 episodes), which is why performance
appears to decrease slightly before episode 40. The TD and SR agents were assumed to have access to a 1-step world
model at initialization, while the MB agent learned the transition structure from experience. (D) SR agents cannot
always adapt to new reward functions if the newly rewarded states have low probablity under the old policy. Left
column: Value function for an agent that learned an initial policy in an environment with a small reward in the upper
left corner and intermediate reward in the upper right corner. The middle top and bottom states are ‘cliffs’. The agent
learned to make an initial rightward choice (grey arrows). Right column: A large reward was introduced in either the
top left corner (top row) or bottom left corner (bottom row) and the value function recomputed (Equation 27). The
agent was unable to adapt to a large reward in the bottom left corner, since the old policy had low probability of
reaching this state, even after initially going to the left. This results in a low expected value for going left from the
start state (red circle), and a suboptimal policy that continues to go right (red arrow). (E) Learning curve for a standard
Q-learning agent (blue) or Dyna agents that perform different numbers of Q-value updates after each physical action
(legend). These Dyna updates used cached experience rather than data from a learned world model. Dyna agents
make better use of limited experience at the cost of increased compute (proportional to the number of updates).

s ′ is any state, and st+1 is the next state actually observed. Intuitively, transitioning from st to st+1 means that (i) we
have just been in state st , and (ii) we should increase the expected occupancy of all states commonly reached from
st+1 (including st+1 itself). Alternatively, if the policy-dependent transition matrix T π is known, whereT π

ss ′ = pπ (st+1 =
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s ′ |st = s ) , the successor matrix can be computed as the geometric seriesMπ = I+γT π +γ2 (T π )2+ . . . = (I −γT π )−1.
The SR has been proposed as a model of how humans and other animals learn and generalize (Momennejad et al.,
2017; Stachenfeld et al., 2017; Geerts et al., 2020; Gershman, 2018). For example, humans adapt more readily to
changes in reward functions than changes in transition functions in a simple sequential binary decision-making task
(Momennejad et al., 2017), consistent with the SR facilitating rapid adaptation to changes in r but only slow learning
of M . Additionally, hippocampal ‘place cells’ have been proposed to encode a predictive map, with each cell corre-
sponding to a column of M (Stachenfeld et al., 2017). In this model, the firing of a place cell in a given location s

reflects the expected future occupancy of its ‘preferred’ location s ′ conditioned on currently being at s . Stachenfeld
et al. (2017) showed that the SR model explains a range of findings in the hippocampal literature. For example, this
model explains the asymmetry of directional place fields on a one-dimensional track (Mehta et al., 2000), where s ′ is
more likely to be reached from other states s that precede s ′ than equidistant states that follow s ′. The SR also explains
why place fields change near a newly inserted barrier, since two states on either side of the barrier can no longer be
visited in quick succession (Alvernhe et al., 2011).
While the SR is perhaps the most prominent model in systems neuroscience that combines features of model-free
and model-based RL, it is not the only one. Another interesting algorithm is the ‘Dyna’ architecture of Sutton (1991).
In this framework, a model of the world is learned from experience and used to train a model-free policy offline by
bootstrapping imagined experience sampled from the model. This allows for more data-efficient learning of model-
free policies at the cost of additional compute during ‘rest’, but without needing more compute at decision time
(Figure 4E). The model used to simulate data for offline training can either be an explicit learned world model, or
it can simply be a memory buffer of past experiences in the form of (st , at , rt , st+1, at+1 ) tuples. Such experience
replay has also proven crucial to the success of modern deep reinforcement learning agents by allowing for higher
data efficiency and reducing the instability arising from online experience being autocorrelated (Mnih et al., 2013;
Schaul et al., 2015). A prominent theory in neuroscience posits that hippocampal replays could be implementing such
a Dyna-like algorithm by generating imagined experience that is used to train the model-free RL systems of the brain
(Mattar and Daw, 2018). This theory is supported by the finding that patterns of rodent replay in multiple navigation
tasks are consistent with the optimal replays of a Q-learning agent with Dyna, and it has recently been extended to
explain not just the content of replays but also their timing (Agrawal et al., 2022).

7 | DEEP REINFORCEMENT LEARNING

We have so far considered small state and action spaces, where tabular policies are tractable. Unfortunately, most
ethologically relevant state spaces are large enough that we cannot enumerate all possible states and actions. How-
ever, novel situations often resemble previously encountered states, allowing agents to generalize shared structure to
these new but related settings (Botvinick et al., 2020). In these cases, we can use function approximation (Sutton and
Barto, 2018) instead of tabular policies. This involves an assumption that similar states will have similar state-action
values and should therefore have similar policies. By making this assumption, we can generalize to unseen states
based on previous experience. The use of deep or recurrent neural networks as powerful function approximators for
reinforcement learning has driven impressive progress in this setting – the domain of ‘deep reinforcement learning’
(deep RL). Deep RL has seen increasing interest not just in machine learning, but also as a model of neural dynamics
and behaviour in humans and other animals (Wang et al., 2018; Jensen et al., 2023; Makino, 2023; Merel et al., 2019;
Banino et al., 2018; Aldarondo et al., 2024; Botvinick et al., 2020). Popular approaches in (model-free) deep RL can
largely be divided into two categories: value-based methods, which compute state-action values that can be used for
action selection; and policy gradient methods, which train a neural network to output a policy directly.
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| Value-based methods
The deep RL approaches most similar to the tabular methods considered in Section 3 and Section 4 use neural net-
works to compute state-action values, which can be used for action selection as we saw in Equation 11. However, by
using function approximation instead of the tabular values considered previously, these networks can generalize to
unseen states in large state spaces. This gives rise to the family of ‘deep Q-learning’ methods, which closely mirror
the tabular Q-learning considered previously, but now with function approximation.
The simplest approach involves defining a state-action value function Qθ (s, a ) , where the parameters θ of the neural
network defining our agent are learned as follows:
• Collect experience (st , at , rt , st+1 ) .
• Define a loss L = 0.5[Qθ (st , at ) − (rt + γmaxaQθ (st+1, a ) ) ]2.
• Update parameters ∆θ ∝ − ∂L

∂θ [often treating the ‘target value’ yt = (rt + γmaxaQθ (st+1, a ) ) as constant w.r.t. θ].
When acting according to our policy, we simply pick the action predicted to have the highest value, usually using some
variant of ϵ-greedy or softmax to increase exploration.
On the surface, this looks like a straightforward generalization of tabular Q-learning, and it may seem surprising that
deep Q-learning did not see significant use or success until the foundational work of Mnih et al. (2013). However, a
major difficulty arises from the autocorrelation of the states observed by the agent, which destabilizes training. This
can be mitigated by the use of ‘experience replay’, where the experience generated by the agent is added to a global
replay buffer B. One or more experiences are then sampled randomly from the buffer at each iteration and used
to update the network parameters – reminiscent of the ‘Dyna’ architecture described previously. Additionally, the
target value yt = (rt + γmaxaQθ (st+1, a ) ) itself depends on θ and therefore changes when any Q-value is updated (in
contrast to tabular Q-learning, where there is no parameter sharing). It is therefore common to use a ‘target network’
Qθ′ that remains fixed for multiple rounds of data collection and parameter updates. This reduces fluctuations in the
target values, and the resulting parameter updates are gradients of a well-defined objective function. Together, these
two approaches give rise to the ‘deep Q network’ (DQN) developed by Mnih et al. (2013), which is trained as follows:
• Collect experience (st , at , rt , st+1 ) and add to B [optionally many iterations and optionally removing stale experi-
ences].
• Randomly sample an experience (s ′t , a ′t , r ′t , s ′t+1 ) ∼ B [optionally a full batch].
• Define a loss L(θ ) = 0.5[Qθ (s ′t , a ′t ) − (r ′t + γmaxaQθ′ (s ′t+1, a ) ) ]

2 [optionally averaged over the full batch]. Note
the ‘student network’ has parameters θ and the target network inside the max has parameters θ′.
• Update the network parameters ∆θ ∝ − ∂L(θ)

∂θ .
• At regular intervels, set our target network to the student network, θ′ ← θ.
This algorithm is effectively off-policy, since most of the data in B is collected by a policy defined by an old set
of parameters – and the data in B can in fact be generated completely independently of the agent being trained.
Even though the DQN is more stable than naive deep Q-learning, an additional instability arises from the fact that
Qmax (s ′t+1 ) = maxaQθ′ (s ′t+1, a ) uses the sameQvalues both to estimatewhich action is best andwhat the value of that
action is, which leads to a positively biased estimate. This can be mitigated by ‘double Q-learning’ (Van Hasselt et al.,
2016), where the student network selects the best action and the target network evaluates its value, Qmax (s ′t+1 ) ←
Qθ′ (s ′t+1, argmaxa (Qθ (s ′t+1, a ) ) ) .
While modern deepQ-learning has reached impressive performance across a range of machine learning settings (Mnih
et al., 2013; Lillicrap et al., 2015; Schaul et al., 2015; Kalashnikov et al., 2018), it is unclear whether the various modi-
fications needed to stabilize the algorithm could be implemented in biological circuits. This is perhaps the reason why
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neuroscience research using deep Q-learning has been relatively scarce, despite the prevalence of tabular Q-learning
in theoretical neuroscience. An interesting exception is recent work byMakino (2023), which shows parallels between
the values learned by a DQN and neural representations in mammalian cortex during a compositional behavioural task.
Additionally, the importance of experience replay in DQNs (Mnih et al., 2013; Schaul et al., 2015) has close parallels
to the proposal that hippocampal replay constitutes a form of experience replay (Mattar and Daw, 2018).
| Policy gradient methods

A conceptually simpler approach for deep reinforcement learning uses policy gradient methods (Sutton and Barto,
2018), where a neural network with parameters θ takes as input the (observable) state of the environment and directly
outputs a policy πθ . This has also found more support and use in the neuroscience literature, where policy gradient
methods have recently been used as models of learning and neural dynamics in the biological brain (Wang et al., 2018;
Jensen et al., 2023; Merel et al., 2019; Song et al., 2017).
The objective in a policy gradient network is to find the setting of θ that maximizes expected reward. A naive way to
achieve this would be to define Rτ := ∑T

t=0 γ
t rt and compute gradients given by
+θ J (θ ) = +θÅτ∼pπθ (τ ) [Rτ ] (29)

=
∑
τ

Rτ+θpπθ (τ ) . (30)

Here, τ ∼ pπθ (τ ) indicates trajectories sampled from the distribution induced by the policy πθ , and J (θ ) indicates
the expectation of Rτ under pπθ (τ ) (c.f. Equation 2). However, evaluating Equation 30 requires us to know how the
environment will respond to our actions, which in general may not be the case. Instead, we use the ‘log-derivative
trick’, which takes advantage of the linearity of the expectation and the identity +θ log f (θ ) = f (θ )−1+θf (θ ) to write

+θ J (θ ) =
∑
τ

Rτ+θpπθ (τ ) (31)
=

∑
τ

Rτpπθ (τ )+θ log pπθ (τ ) (32)
= Åτ∼pπθ (τ )

[
Rτ+θ log pπθ (τ ) ] , (33)

Since the environment does not depend on θ, we can simplify the calculation of +θ log pπθ (τ ) :

+θ log pπθ (τ ) = +θ

[
log p (s0 ) +

T∑
t=0

log p (st+1 |st , at ) + log πθ (at |st )
]

(34)

=
T∑
t=0

+θ log πθ (at |st ) . (35)

Inserting Equation 34 in Equation 31, we arrive at the REINFORCE algorithm (Williams, 1992):

+θ J (θ ) = Åτ∼pπθ (τ )

[
Rτ

T∑
t=0

+θ log πθ (at |st )
]

(36)

≈ 1

N

∑
τ∼pπθ (τ )

(
T∑
t=0

γt rt

) (
T∑
t=0

+θ log πθ (at |st )
)
, (37)

where the second line approximates the expectation with N empirical rollouts of the policy in the environment. In-
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tuitively, Equation 37 says that we should preferentially upregulate the probability of trajectories with high reward.
Importantly, it no longer differentiates through the environment – only the policy.
While the REINFORCE algorithm is unbiased, it also has high variance, which can make learning slow and unstable. It
is therefore common to introduce modifications that reduce the variance. The first of these comes from noting that
an action taken at time t cannot affect the reward at times t ′ < t . We therefore define R t := ∑T

t ′=t γ
t ′−t rt ′ and write

a new update rule as

+̂θ J (θ ) ≈
1

N

∑
τ∼pπθ (τ )

T∑
t=0

R t+θ log πθ (at |st ) . (38)

This is the formulation most commonly used in the literature, but it is not actually the same as Equation 37, which
would use R t =

∑T
t ′=t γ

t ′−0rt ′ . As briefly discussed in Section 2, this is because the discount factor γ is generally used
as a variance reduction method rather than because we intrinsically care less about rewards later in the task. In fact,
Equation 38 is not strictly speaking a gradient (Nota and Thomas, 2019), which is why we denote it +̂.
It can also be shown that subtracting an action-independent baseline from R t does not change the expectation in
Equation 38, while potentially reducing its variance. A common choice is the expected future rewardV (st ) :

+̂θ J (θ ) ≈
1

N

∑
τ∼pπθ (τ )

T∑
t=0

(R t −V (st ) )+θ log πθ (at |st ) . (39)

Intuitively, Equation 39 upregulates the probability of actions that lead to higher-than-expected reward and downreg-
ulates the probability of actions that lead to lower-than-expected reward.
Finally, it is common to reduce the variance of the gradient estimate further through an approach known as ‘bootstrap-
ping’, which approximates R t ≈ rt +γV (st+1 ) . This is useful because rt +γV (st+1 ) has lower variance than∑T

t ′=t γ
t ′−t rt ′ .

We therefore replace (R t − V (st ) ) in Equation 39 with the ‘advantage function’ A (st , at ) = Q (st , at ) − V (st ) ≈
rt + γV (st+1 ) − V (st ) . In between these two extreme cases of a full Monte Carlo estimate of R t and a ‘one-step’
bootstrap, the sum in R t can be truncated to any order, with R t ′ replaced by V (st ′ ) (Sutton and Barto, 2018). In
theory, this gradient estimate remains unbiased if the value function is correct. In practice, the learned estimate of
V (st ′ ) will be inexact, which biases the parameter updates. Bootstrapping therefore leads to a tradeoff between the
bias and variance of parameter updates.
These variance reduction approaches give rise to the so-called ‘actor-critic’ algorithm, where an agent both computes a
policy π (the actor) and an ‘evaluation’ of the policy in the form of state(-action) values (the critic). A rich neuroscience
literature suggests that the basal ganglia of biological agents implement an actor-critic-like algorithm. Here, dorsal
striatum is proposed to implement the ‘actor’ and ventral striatum the ‘critic’ (Takahashi et al., 2008; Sutton and Barto,
2018; O’Doherty et al., 2004).
For these actor-critic algorithms, it is common to parameterize both the policy πθ (a |s ) and value functionVθ (s ) with
neural networks. To optimize these parameters using out-of-the-box automatic differentiation, we need towrite down
an ‘objective function’ with the correct gradients – but we saw in Equation 30 that this cannot simply be the expected
reward. Instead, we define an auxiliary utility (i.e. negative loss)

J̃ (θ ) = 1

N

∑
τ∼pπθ (τ )

T∑
t=0

(R t −V (st ) ) log πθ (at |st ), (40)
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F IGURE 5 Meta-reinforcement learning. The results in this figure reproduce some of the analyses in Figure 1 of
Wang et al. (2018). (A)We trained a recurrent meta-reinforcement learning agent in a two-armed bandit task, where
the reward probabilities of each arm were sampled independently from U(0, 1) at the beginning of each episode and
remained fixed throughout the episode. A recurrent neural network was trained across many episodes with different
reward probabilities using an actor-critic algorithm. The input to the agent consisted of the previous action, the previous
reward, and the time-within-trial. The average reward per episode is plotted against the episode number, showing that
the agent gradually learns to adapt within each episode to the particular instantiation of the bandit task. Importantly,
the parameters of the network are fixed within an episode, meaning that this adaptation occurs through the recurrent
dynamics. Dashed horizontal lines indicate the reward of an agent selecting random actions and an ‘oracle’ agent that
always chooses the best arm. (B)Heatmap showing example behaviour of the agent in episodes with different reward
probabilities for the first arm, p (r |a = 1) . For the analysis here and in (C), we set p (r |a = 2) = 1 − p (r |a = 1) . Across
episodes, the agent experiments with different actions and eventually converges on the optimal action. For episodes
with more similar reward probabilities (near the middle), it takes longer to identify the optimal action. This balance
between exploration and exploitation is mediated by the recurrent network dynamics, which are learned over many
episodes using deep reinforcement learning. (C) We averaged the hidden state of the RNN over 100 episodes for
each of several different reward probabilities, ranging from low (green) to high (blue) p (r |a = 1) . We then performed
PCA on the resulting matrix of average hidden states to compute a low-dimensional trajectory over the course of
an episode for each reward probability. This two-dimensional embedding of neural activity converges to different
regions of state space during the episode for different reward probabilities. Black cross indicates the hidden state at
the beginning of an episode, and coloured points indicate the final hidden state in an episode for the different reward
probabilities.

where R t can optionally be approximated by rt +γV (st+1 ) . While J̃ (θ ) has no intrinsic interpretation, it is chosen such
that +θ J̃ (θ ) = +̂θ J (θ ) when treating δt := (R t −V (st ) ) as constant w.r.t θ, and the gradients can be computed using
standard automatic differentiation. The gradient of the value function loss is then given by +θ

∑
t
1
2 (R t −Vθ (st ) )2 =∑

t [−δt+θVθ (st ) ].
While these policy gradientmethodsmay seem far removed fromneuroscience, it has been found that neural networks
trained with policy gradients often learn representations and behaviours reminiscent of biological organisms (Wang
et al., 2018; Jensen et al., 2023; Merel et al., 2019; Li et al., 2022; Song et al., 2017).
| Meta-reinforcement learning

A prominent example of deep reinforcement learning providing insights into biological circuits is the ‘recurrent meta-
reinforcement learning’ model developed by Wang et al. (2018). The authors trained a recurrent deep RL agent using
policy gradients, where the RNN parameters are configured by learning from rewards over long periods of time from
many tasks that have a shared underlying structure. Importantly, this ‘slow’ model-free learning process gives rise to
an agent that can rapidly learn from experience with fixed parameterswhen exposed to a new task from the same task
distribution. This is achieved by the agent learning to effectively implement a fast RL-like algorithm in the dynamics
of the network (Figure 5). This process, whereby an agent trained slowly on a large distribution of tasks can rapidly
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adapt to a new task, is known as ‘meta-reinforcement learning’ (Finn et al., 2017; Ritter et al., 2018; Duan et al., 2016;
Wang et al., 2016). Wang et al. (2018) suggested that prefrontal cortex resembles such a recurrent meta-RL system,
and their model explained a range of neuroscientific findings. This included
• Dynamic adaptation of the effective learning rate of an agent to the volatility of the environment (Behrens et al.,
2007).
• The emergence of ‘model-based’ behaviour in the ‘two-step’ task commonly used to distinguish between model-
free and model-based RL (Miller et al., 2017; Daw et al., 2011).
• The ability of animals to get progressively faster at learning when exposed to multiple tasks with a consistent
abstract task structure (Harlow, 1949).
Further experimental evidence for this meta-RL framework comes from Hattori et al. (2023), who showed that across-
session learning in a reversal learning task relied on synaptic plasticity in orbitofrontal cortex (OFC; a subregion of
PFC), while within-session learning relied on recurrent dynamics in OFC. Recently, Jensen et al. (2023) also extended
the work ofWang et al. (2018) to allow the meta-RL network dynamics to update the policy from imagined experience
using a learned model of the environment – reminiscent of Dyna, but now implemented in RNN dynamics instead of
parameter updates.

8 | DISTRIBUTIONAL REINFORCEMENT LEARNING

In Equation 3 and Equation 10, we defined the expected future reward for a given state or state-action pair. The meth-
ods considered so far have only used such expectations as a learning signal. However, recent research suggests that
animals may in fact estimate entire future reward distributions (Dabney et al., 2020; Sousa et al., 2023). These studies
were inspired by findings that such distributional RL can improve the performance of artificial agents (Bellemare et al.,
2017, 2023; Dabney et al., 2018). To formalize this, we use Z π (s, a ) to denote a single sample from the distribution
over possible cumulative discounted future rewards resulting from following policy π after taking action a in state s :

Z π (s, a ) ∼ pzπ

( ∑
t ′>=t

γt
′−t rt ′ |st = s, at = a

)
(41)

The stochasticity of Z π can both be due to stochasticity in environment dynamics and reward, and it can be due to
stochasticity in the policy of the agent itself. Clearly, the expectation of Z π (s, a ) equals the corresponding Q value:

Åpzπ

[
Z π (s, a )

]
= Qπ (s, a ) . (42)

Instead of only estimating this expectation, we now want to learn the full distribution of returns, pzπ (Z π (s, a ) ) . One
normative reason to learn this distribution is to develop methods that are risk averse (Morimura et al., 2010, 2012)
or explicitly take into account uncertainty (Dearden et al., 1998). However, recent work has suggested that such a
distributional approach can also increase expected reward by improving representation learning in the deep RL setting
(Bellemare et al., 2017; Dabney et al., 2018; Rowland et al., 2019; Bellemare et al., 2023). This is because traditional
deep RL only distinguishes states that have different expected value, while distributional RL learns to distinguish
states that have different value distributions (Figure 6A).
To implement distributional RL, we consider the τth expectile of pzπ (Z π (s, a ) ) , ϵτ , which is defined for a random
variable Z as the solution to the equation

τÅ[max(0, Z − ϵτ ) ] = (1 − τ )Å[max(0, ϵτ − Z ) ] . (43)
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This is a generalization of the mean, which is recovered for τ = 0.5, similar to how the quantile generalizes the notion
of a median. A distribution is uniquely specified by its expectiles, and we can therefore represent pzπ (Z π (s, a ) ) in
terms of {ϵτ }. Translating this to an RL algorithm involves training a network (or tabular values) to predict a set of
expectiles for a given state (and action). The parameters of the agent are then updated by propagating the distribution
implied by the predicted expectiles through the Bellman equation and minimizing the difference between the initial
and propagated distributions (Bellemare et al., 2023).
In the tabular value learning case (c.f. Section 3), this can be achieved using a modified TD-update rule (c.f. Equation 9;
Lowet et al., 2020; Figure 6B). In particular, we consider a set of units {Vτi (s ) }, each with a target expectile τi :=

α+
i

α+
i
+α−

i
of the return distribution pzπ (Z π (s ) ) (where pzπ (Z π (s ) ) = ∑

a [π (a |s )pzπ (Z π (s ) ) ]). These expectiles can
be learned by sampling experience from the environment under the policy and defining a TD error for each unit and
state transition as

δi := rt + γZ̃ π
j (st+1 ) −Vτi (st ) . (44)

Here, Z̃ π
j
(st+1 ) is a random sample from the learned approximate distribution of cumulative future returns from state

st+1, p{Vτi } (Z̃ π (st+1 ) ) (Lowet et al., 2020; Dabney et al., 2020). We then apply the following update rule to all units:
∆Vτi (st ) = α+i max(δi , 0) + α−i min(δi , 0) . (45)

In other words, we apply the TD update rule to each unit with learning rate α+
i
for positive TD errors and learning rate

α−
i
for negative TD errors. When running this algorithm to convergence, Vτi (s ) will approach the τi

th expectile (ϵτi )of pzπ (Z π (s, a ) ) . In the deep RL setting, we would compute gradients of the form +θL =
∑

i ∆Vτi (st )∂Vτi (st )/∂θ tolearn a model with parameters θ that predicts the full set of expectiles. We refer to Bellemare et al. (2017); Dabney
et al. (2018); Rowland et al. (2019); Bellemare et al. (2023); and Dabney et al. (2020) for additional mathematical
details, alternative parameterizations of the return distribution, and extensions to the control setting.
Intriguingly, recent work in neuroscience suggests that distributional RL could underlie value learning in biological neu-
ral circuits (Dabney et al., 2020; Lowet et al., 2020; Sousa et al., 2023). In particular, Dabney et al. (2020) recorded the
activity of dopaminergic VTA neurons during a task with stochastic rewards and showed that the neurons appeared to
represent the full distribution of possible outcomes using an expectile representation. More concretely, they showed
that:
• The VTA neurons exhibited a range of different ‘reversal points’ – defined as the reward magnitude at which the
firing rate of a neuron did not change from its baseline firing rate. This is consistent with a distributional RL theory,
where the changes in neural firing rates from baseline correspond to the expectile TD updates considered above. In
this case, the reversal point of a neuron i should beVτi ≈ ϵτi (Figure 6C).• Neurons had different slopes describing the relationship between expected reward and firing rate in the regimes
where expected reward was above and below the reversal point (Vτi ) of each neuron. This is consistent with the
algorithm described in Equation 45 (Figure 6C).
• When independently fitting a slope to the data above (α+

i
) and below (α−

i
) the reversal point of neuron i , the reversal

point of the neuron was positively correlated with τi =
α+
i

α−
i
+α+

i
. This is consistent with the expectile distributional RL

setting, where the reversal point isVτi ≈ ϵτi , which is monotonic in τi (Figure 6C).
• When ‘imputing’ the distribution implied by the VTA neurons when interpreted as expectiles (Figure 6D), the re-
sulting fit resembled the true distribution of rewards in the experiment.
These findings generalize the canonical RPE view of Schultz et al. (1997), which can be seen as the averaged version
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F IGURE 6 Distributional reinforcement learning. (A) Example of distributional RL improving representation learn-
ing. Two states (e.g. ‘banana’ and ‘lemon’) may have the same expected future reward but different reward distributions
(top row). A standard RL agent only has to predict the mean (orange vertical lines) and may learn a simple predictive
feature like ‘yellow’ that combines both states. If the expected future reward now changes for one state (bottom
row), e.g. because the agent learned to make a banana smoothie, it may erroneously generalize to all yellow fruits
(bottom right; red line). However, a distributional agent is forced to learn an initial representation that distinguishes
the states, which can improve downstream learning and prevent overgeneralization (blue curves). (B) Distributional
RL simulations on a value estimation task with a single state and no actions, reproducing key ideas from Dabney et al.
(2020). Distribution of rewards (black), plotted together with the learned valuesVτi across 20 units learning through
standard TD learning (orange; all τi = 0.5), or through distributional RL with different τi = α+

i
α+
i
+α−

i
(blue). The TD units

all converge to the mean reward, while the expectile units end up tiling the distribution. (C) For both the TD units and
distributional units from (B), we plot the temporal difference updates performed in response to different rewards from
the reward distribution. These updates have been proposed to be represented in the firing rates of dopaminergic VTA
neurons relative to baseline (Schultz et al., 1997; Dabney et al., 2020). The TD units show a constant linear scaling
across positive and negative rewards, while the distributional units show an asymmetric scaling of firing rate with
reward magnitude above and below their reversal point (black horizontal line). The ratio of slopes above and below
the reversal point scales positively with the value of the reversal point. These features of dopaminergic VTA neurons
were used by Dabney et al. (2020) to argue that the brain implements a form of distributional RL. (D) True reward
distribution (black) reproduced from (B), now plotted together with the reward distribution p{Vτi } (Z̃

π (s ) ) implied by
the distributional units from (B) and (C) at different stages of learning (green to blue). These imputed distributions
were computed by assuming that the value Vτi learned by unit i corresponds to expectile τi =

α+
i

α+
i
+α−

i
of the reward

distribution. We then infer the distribution implied by these expectiles under the assumption that it consists of a set
of 20 delta functions (Rowland et al., 2019). Finally, we convolved the resulting delta functions with a Gaussian kernel
(σ = 0.1) for visualization. This process was repeated using {Vτi } at different stages of learning. The units were all
initialized atVτi = 0.5, so the initial distribution is a delta function at r = 0.5 (green). At the end of learning, the pop-
ulation faithfully represents the true reward distribution, capturing key features including bimodality and the relative
magnitude of the two modes (blue). Dabney et al. (2020) used a similar approach to infer the distribution encoded by
dopaminergic VTA neurons at the end of animal training and found a close match to the true reward distribution.

of the theory by Dabney et al. (2020). The expectile regression algorithm investigated by Dabney et al. (2020) relies
on non-local TD updates and non-linear ‘imputation’ of the return distribution p{Vτi } (Z̃

π (s ) ) induced by the learned
expectiles {Vτi (s ) }. However, recent work has suggested more biologically plausible distributional RL updates to
address these challenges (Tano et al., 2020; Wenliang et al., 2023).

9 | LEARNING FROM SCALAR REWARDS?

The methods discussed so far have all relied on some scalar ‘reward’ available from the environment. Distributional RL
predicted the full distribution of possible rewards but still assumed that an external reward was eventually observed.
This is perhaps reasonable in many experimentally controlled settings, where we deliver juice or water to animals as a
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function of their actions. It is also often appropriate in machine learning, where we want to optimize some externally
imposed objective that can be quantified. However, in natural environments, there is no such ‘global’ reward – instead,
different actions can be rewarded in different ways thatmust be converted to an internal learning signal (Juechems and
Summerfield, 2019). For example, foraging for food might reduce hunger, while collecting water might reduce thirst.
Starting a family might have an initial energy cost, but it could improve survival later in life and propagate the gene
pool. An RL purist would convert all of these different gains and losses into a single common unit and balance them
appropriately to decide what actions to take (Silver et al., 2021). However, it has also been suggested that biological
agents adaptively change their instantaneous objective via a higher-order controller in e.g. prefrontal cortex, which
determines what the current lower-level objective is (Juechems and Summerfield, 2019; Miller and Cohen, 2001;
Botvinick, 2008). This resembles ideas in hierarchical reinforcement learning (Pateria et al., 2021; Botvinick, 2008),
but here the higher-order policies are not necessarily learned through reinforcement learning within a lifetime, instead
emerging during evolution where survival depends on the discovery of ‘useful’ objectives.
A related challenge is the technical difficulty of learning from scalar rewards, which are generally sparse. While the
methods in Section 7 can train a neural network to maximize reward in theory, in practice they are often noisy, unsta-
ble, or find local minima. As a topical example, consider the challenge of training large language models to interact
with human users. Training such a model from scratch using reinforcement learning would be near-impossible, but
‘pretraining’ the model on a large unsupervised dataset followed by ‘reinforcement learning from human feedback’ has
proven hugely successful and revolutionized language models for human interactions (Team et al., 2023). This works
because the large unlabelled dataset provides a way to learn good representations that distinguish different concepts,
since this is necessary to solve the base task of predicting the next word. Once such representations are learned, the
subsequent finetuning for human interaction is an easier problem that can be solved with reinforcement learning.
Of more relevance to neuroscience, it is also common in deep RL to introduce additional ‘auxiliary costs’ to the utility
function that are jointly optimized together with reward maximization, and which can use a richer data source to
drive representation learning in the network (Jaderberg et al., 2016). A popular approach is to include losses that
require the agent to predict the next observation from the current state and action (Jaderberg et al., 2016; Zintgraf
et al., 2019). Such predictive losses have close parallels in neuroscience, where it has been suggested that predictive
learning could drive many of the representations observed in biological circuits (Rao and Ballard, 1999; Stachenfeld
et al., 2017; Whittington et al., 2020; Blanco-Pozo et al., 2021) and serve as a foundation for model-based planning
(Jensen et al., 2023). Fang and Stachenfeld (2023) also recently showed that augmenting an RL agent with an auxiliary
predictive objective leads to neural representations that resemble biological circuits more closely. This suggests a
potentially important interaction between self-supervised representation learning and reward-driven reinforcement
learning in biological circuits.
If a good predictive model of the world is learned, this model can also be used together with a search algorithm to turn
the reinforcement learning problem into a supervised learning problem. As an example, the MuZero model developed
by Schrittwieser et al. (2020) to learn Atari, chess, shogi, and Go, was trained to predict future values and actions by
unrolling the environment using a learned latent representation. It then usedMonte Carlo tree search (MCTS; a model
based-search algorithm c.f. Section 5) and the predicted value function to improve the provisional actions predicted
by the base policy network. These final actions, which had been optimized using MCTS, were treated as a supervised
learning target for the base policy network. Through many iterations of such predictive learning, MCTS-based policy
improvement, and training of the base policy, the network learned both the transition structure of the task and to
select good actions. Such semi-supervised approaches to reinforcement learning are useful in the common setting
where learning the transition structure of theworld is easier than learning a policy (Jensen et al., 2023). Thesemethods
also have interesting parallels to learning in biological networks, where interactions between model-based and model-
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free systems are similarly thought to drive action selection based on learned latent representations (Botvinick et al.,
2020).
Finally, algorithms that seek to maximize scalar rewards often run into challenges related to exploration. In particular,
once an above-average policy has been identified, exploration is disfavored because it has lower expected reward,
even if there is a finite probability of discovering new and better policies. This is why imposing stochasticity in the
form of e.g. ϵ-greedy policies is common in the tabular RL literature. In deep RL, it is instead popular to include
various forms of ‘exploration bonuses’ in the objective function. Policy gradient algorithms for example often add an
auxiliary entropy loss of the form LE =

∑
τ∼pπθ (τ )

∑T
t=0

∑
a πθ (at |st ) log πθ (at |st ) , and indeed the bandit example in

Figure 5 does not work without such an entropy loss. Other approaches to improve exploration include hierarchical
reinforcement learning, which introduces autocorrelations in the policy to improve coverage of the state space. This
is reminiscent of the biological ‘Lévy flight’ hypothesis, which suggests that animals explore an environment using
a heavy-tailed distribution of ‘step sizes’ to maximize the probability of finding sparse rewards (Viswanathan et al.,
1999). Biological agents are also thought to engage in periods of ‘random exploration’ that can be interpreted as a
biological parallel to ϵ-greedy-like algorithms. Random exploration appears to be under noradrenergic control (Tervo
et al., 2014; Dubois et al., 2021), while the zona incerta can drive more directed exploration (Ahmadlou et al., 2021).
Such neural control of exploration is particularly well-characterized in the zebra finch song circuit (Ölveczky et al.,
2005), and it is consistent with a view of top-down imposition of flexible reward functions – where one possible
objective could be to increase variability or reduce uncertainty – rather than optimization of a global scalar reward.

10 | DISCUSSION

In this review, we have provided a mathematical overview of some of the many reinforcement learning methods that
are commonly used in systems and computational neuroscience. We have also highlighted a range of explicit parallels
between these methods and experimental results in neuroscience and cognitive science to illustrate the utility of
reinforcement learning as a framework for understanding biological learning and decision making. This has ranged
from classical work on reward prediction errors (Schultz et al., 1997) to recent findings of distributional reinforcement
learning in biological circuits (Dabney et al., 2020).
While RL has already had a profound influence on systems neuroscience, several open questions remain. In particular,
much work has focused on simple stimulus-response or binary decision making tasks. This is a far reach from etholog-
ically relevant problems that involve processing multimodal stimuli, decision making with long-lasting consequences,
and high-dimensional motor control. Some recent work building on deep RL has started to bridge this gap. For ex-
ample, Banino et al. (2018) demonstrated the emergence of grid cells in agents navigating complex environments,
Aldarondo et al. (2024) showed similarities between an RL agent trained to control a virtual rodent and corresponding
biological motor representations, and Jensen et al. (2023) showed parallels between a recurrent meta-RL agent and
human behaviour in a navigation task requiring temporally extended thinking. However, muchwork remains to extend
our neuroscientific understanding to ethologically relevant settings, both experimental and computational.
A related challenge will be to combine different components of existing models to capture the generalist nature of
biological circuits. This is in contrast to past work, which has often focused on a single neural circuit or function, such
as motor control or navigation. Such a generalist approach will involve explicit modeling of the roles of different brain
regions, and more importantly it will require us to capture how they interact with one another during learning and
decision making. Clearly, such models will need to be constrained by experimental data, both at the level of behaviour
and at the level of neural activity. This is becoming increasingly feasiblewith recent advances in recording technologies,
both for high-resolution behavioural tracking (Mathis et al., 2018; Dunn et al., 2021) and for simultaneous and long-
term recording of neural activity (Steinmetz et al., 2021; Pachitariu et al., 2016; Dhawale et al., 2017).
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Finally, most work on reinforcement learning in neuroscience has considered short-term decision making tasks, where
planning and decision making in primitive state and action spaces are feasible. This is in stark contrast to most human
decision making, which occurs over extended timescales and often involves hierarchies of decisions or priorities that
change over time. For example, we may decide to pursue an undergraduate degree at Cambridge University, which
then requires us to (i) write an application, (ii) prepare for an interview, and (iii) arrange our travel. Each of these
processes in turn require us to plan increasingly low-level decisions, such as booking a flight or deciding which bus to
take to the airport. This is the topic of hierarchical reinforcement learning, which has already been highlighted as a
potentially useful model of human behaviour (Eckstein and Collins, 2020; Botvinick, 2008; Botvinick et al., 2009) and
is becoming an increasingly important area of research in machine learning (Pateria et al., 2021). While reinforcement
learning will undoubtedly remain important for understanding such flexible animal behaviour, we should also keep in
mind the shortcomings and challenges of learning from scalar rewards (Section 9). It will be important to investigate
the regimes in which reinforcement learning provides a good model of behaviour and neural dynamics, while also
exploring other frameworks with potentially richer learning substrates. This will also enable the study of interactions
between such different learning algorithms, which will likely be necessary to understand biological learning in rich
environments.
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11 | ADDITIONAL TOPICS OF INTEREST

While we have tried to provide a fairly comprehensive overview of topics in reinforcement learning of interest to
neuroscience, there are naturally many interesting areas that we have had to omit. Here we provide a brief description
of some of these together with pointers to relevant literature for those who are interested in exploring them further.
11.1 | Hierarchical reinforcement learning

So far, we have considered a simple environment consisting of discrete states and actions, and all planning and decision
making has taken place in the space of action primitives. However, when planning over longer horizons, it can be
necessary to break down the overall policy into a series of sub-goals, sub-policies, or ‘skills’ (Sutton et al., 1999;
Pateria et al., 2021). This is the topic of hierarhical reinforcement learning (HRL) and ‘options’, where an agent learns
a high-level policy over policies that can themselves be specified in terms of primitive actions or even lower-level
policies. Such HRL has been found to explain features of human behaviour (Eckstein and Collins, 2020; Botvinick,
2008; Botvinick et al., 2009) and remains an area of substantial interest in the neuroscience literature.
11.2 | Off-policy & offline reinforcement learning

In most of the work considered in this paper, the experience used to train the RL agents has been sampled from the
policy of the agent itself. Indeed this is required for the gradients to be unbiased in the vanilla policy gradient setting.
However, an area of substantial interest is that of offline reinforcement learning, where the agent is trained from
scratch on the basis of pre-collected experience (Levine et al., 2020). This is particularly important in cases where
online data collection is expensive or too risky but large-scale datasets exist, such as in many healthcare settings. Off-
policy reinforcement learning is the related problem of learning from a combination of online data and pre-generated
data, possibly from a ‘stale’ version of the current agent. The off-policy setting is especially relevant to biology, where
data collection is expensive and we therefore wish to make maximum use of existing data. This can e.g. be achieved
through experience replay, which can be prioritized (instead of sampled at random) to maximize future reward and
minimize temporal opportunity costs (Mattar andDaw, 2018; Agrawal et al., 2022; Schaul et al., 2015). A variety of ‘off-
policy’ policy gradient methods have also been developed to improve sample efficiency, which de-bias the gradients
e.g. through the use of importance sampling (Espeholt et al., 2018; Jie and Abbeel, 2010; Peshkin and Shelton, 2002;
Haarnoja et al., 2018).
11.3 | Imitation learning

Related to the problem of offline reinforcement learning is that of imitation learning, where we also learn from pre-
collected data. However, in contrast to offline RL where we make no assumption about the quality of the policy used
to collect the data, imitation learning assumes that the data has been collected by an ‘expert’ wewish to imitate (Levine
et al., 2020). This is useful in cases where a large amount of expert data is available, such as the case of autonomous
driving (Pan et al., 2017). Imitation learning is clearly important during early development in biological organisms,
where we learn from observing the individuals around us. Indeed, such imitation learning is a hallmark not just of
humans but has also been demonstrated in organisms as ‘simple’ as the bumblebee (Loukola et al., 2017). Imitation
learning has also recently been used to learn models of biological neural circuits from high-resolution behavioural data
(Aldarondo et al., 2024).
11.4 | Linear reinforcement learning

As we have seen in most of this tutorial, reinforcement learning is generally difficult and requires iterative algorithms
that often scale poorly with the problem size. However, there are settings where we can simplify the problem to the
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point where it becomes analytically tractable in an approach known as ‘linear reinforcement learning’ (Todorov, 2006,
2009). This is similar to the SR approach, where we saw that the value function reduces to a linear function of the
reward-per-state. Similar to how the SR matrix can be seen as describing the dynamics of some ‘base policy’, we also
define a base policy in linear RL and compute a ‘control cost’ as the KL divergence between transition dynamics with
and without our controller:

Lct r l (s ) = KL
[
u (s ′ |s ) | |p (s ′ |s )

]
, (46)

where p (s ′ |s ) are the prior transition dynamics and u (s ′ |s ) are the controlled transition dynamics marginalized over
the policy. For Lct r l (s ) to be well-defined, we require u (s ′ |s ) = 0 whenever p (s ′ |s ) = 0, which prevents impossible
transitions even under our flexible controller. When subtracting this loss from the RL objective, the resulting utility
turns out to be convex in u and can therefore be solved efficiently for the controller, which implicitly specifies the
policy. This approach has recently been used as an explicit model of biological decision making (Piray and Daw, 2021,
2024). It also has close parallels to learning and planning as inference (Levine, 2018; Solway and Botvinick, 2012;
Botvinick and Toussaint, 2012) and to RL with information bottlenecks (Lai and Gershman, 2021). Both of these
families of approaches involve reinforcement learning with a KL-regularized reward function, and they have also been
used as models of biological decision making.
11.5 | Successor features

In Section 6, we saw that the successor representation can be used for decision making with flexible adaptation in
environments with changing reward structures. However, we developed this framework only in the tabular setting de-
spite extending TD-learning and Q-learning to the ‘deep RL’ setting with function approximation. This leaves open the
question of whether a similar generalization of the SR exists. This turns out to be the case and is known as ‘successor
features’ (SF; Barreto et al., 2017), where the expected future observation of learned features of the environment are
used in place of the expected future state occupancy. Successor features have also been shown to have a biologically
plausible implementation that facilitates learning and generalization in noisy and partially observable environments
(Vértes and Sahani, 2019).
11.6 | Multi-agent reinforcement learning

We have only considered the case of single agents interacting with a black-box environment. However, in many cases,
multiple agents are simultaneously interacting with each other and the environment around them (Gronauer and
Diepold, 2022). This means that, from the point of view of a single agent, the other agents are part of its environment.
In such settings, there are interesting learning dynamics beyond the scope of the present tutorial, but which are
covered in detail by e.g. Gronauer and Diepold (2022), and which are also of substantial interest in game theory
(Nowé et al., 2012). In some cases, a whole group of agents may be working together to maximize a single joint
reward function – as is the case for members of a single sports team. Interestingly, the learning of many individual
neurons in the brain from a single common reinforcing signal (such as dopamine) can bemodelled as such amulti-agent
reinforcement learning problem (Sutton and Barto, 2018). If the ‘agents’ (or neurons) are assumed to have Bernoulli-
logistic outputs, Williams (1992) shows that the independent learning of individual agents from the global reward
signal leads to the implementation of a policy gradient algorithm at the population level (Sutton and Barto, 2018).
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